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Chapter 1.  Introduction
This document describes how to use Verilator [13] to create a fast cycle accurate SystemC
model of a complete System-on-Chip from its Verilog RTL.

Cycle accurate models in C and SystemC are becoming an increasingly important part of the
verification process, particularly for SoCs with performance critical embedded software. They
represent a software friendly compromise, offering higher performance than traditional event-
driven simulation, but greater accuracy than hand-written instruction set simulators (ISS)
and transaction level models (TLM).

Typically such models follow 2-state, zero-delay synthesis semantics, offering an early insight
into the behavior of the synthesized design. Applications include:

• Detailed performance analysis of systems, based on the actual hardware implementation
running with its embedded software.

• Implementation of low level firmware, such as board support packages codecs and
specialist device drivers, which rely on exact behavior of SoC peripherals.

• Software optimization. This can be particularly important for codec development, where
the performance depends critically on interaction between processor, memory, cache
and MMU. In such scenarios, estimates by ISS and TLM can be out by a factor of 3,
resulting either in wasted silicon, or chips that cannot meet their required performance.

1.1.  Target Audience
If you are new to cycle accurate modeling tools, then this application note provides a hands-
on introduction.

If you are experienced modeler, then this application note will offer suggestions for improving
model performance, based on the author's long experience in this area.

While based on the open source tool, Verilator, the techniques described are equally applicable
to commercial tools such as ARC VTOC or Carbon Design Systems Model Studio.

1.2.  Open Source
Verilator is an open source tool. This entire application note uses an open source SoC design
(ORPSoC) and open source tools. The cycle accurate model is compared against simulation
with Icarus Verilog [9]. The results are analyzed using GTKWave [8]. The ORPSoC application
is built using the GNU C compiler.

1.3.  Further Sources of Information

1.3.1.  Written Documentation
Verilator has its own website (www.veripool.org), providing guidance for downloading,
installing and using the tool. In particular this application note should be read in conjunction
with the Verilator user guide.

SystemC is defined by IEEE standard 1666, and the standardization documents are the
ultimate reference. The SystemC standard [10] is a free PDF download (a novelty for the IEEE).
The open source reference implementation from OSCI includes an introductory tutorial.

The files making up the examples used in this application noted are comprehensively
commented, and can be processed with Doxygen [5]. Each class, member and method's
behavior, parameters and return value is described.

http://www.veripool.org
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1.3.2.  Other Information Channels
There is a wealth of material to support SystemC on the Internet.

The Open SystemC Initiative (OSCI) provides an open source reference implementation of the
SystemC library, which includes tutorial material in its documentation directory. These may
be accessed from the OSCI website (www.systemc.org).

OSCI also provide a number of public mailing lists. The help forum and the community forum
are of particular relevance. Subscription is through the OSCI website (see above).

1.4.  About Embecosm
Embecosm is a consultancy specializing in open source tools, models and training for the
embedded software community. All Embecosm products are freely available under open source
licenses.

Embecosm offers a range of commercial services:

• Customization of open source tools and software, including porting to new architectures.

• Support, tutorials and training for open source tools and software.

• Custom software development for the embedded market, including bespoke software
models of hardware.

• Independent evaluation of software tools.

For further information, visit the Embecosm website at www.embecosm.com.

http://www.systemc.org
http://www.embecosm.com/
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Chapter 2.  Overview of Technologies and Tools
2.1.  Cycle Accurate Modeling
Cycle accurate models provide an accurate description of the state of the model on each
clock cycle. As such they represent a mid-point between traditional event driven simulation
(providing detail within the clock cycle) and high level transaction models (providing details of
bus transactions, but usually only approximate estimates of the cycle count).
Cycle accurate models are of particular value, because they reflect the level of detail seen by a
software engineer using a chip. The software engineer generally cannot see what is happening
within clock cycles.

2.1.1.  Level of Modeling Detail
There is some variation in the level of detail shown with specific modeling techniques. For
example cycle accurate models generated by ARC VTOC from Verilog RTL will show the state
of every state holding register in the model on each clock edge, and any asynchronous signal
edge. Hand-written cycle accurate models within ARM SoC Designer will typically only show
the state on the active edge of the clock cycle, and that state will be restricted to the external
ports and defined internal registers.
Most cycle accurate models follow 2-state, zero delay synthesis semantics. In this way they
are closer to the behavior of the actual chip than traditional 4-state event-driven simulation.
However there is no absolute reason why cycle-accurate models could not follow 4-state
simulation semantics.

2.1.2.  Tool Support
Some cycle accurate models are written by hand—for example the cycle accurate models
supplied by ARM for their processor cores. However the great majority of cycle accurate models
are generated automatically from Verilog or VHDL RTL. There are two commercial products
(ARC VTOC and Carbon Design Systems ModelStudio) and one free open source product
(Verilator).

2.1.3.  Modeling Language
All these tools generate models in C/C++. However SystemC is becoming increasingly popular,
and is generated by all the tools as well. However the reference OSCI SystemC simulator carries
a serious performance penalty, and in all cases the model is a SystemC wrapper for the top
level ports around a plain C/C++ model.
The performance penalty of SystemC wrappers should be a consideration when generating
cycle accurate models. Performance can be particularly adversely affected by any ports of wider
than 64-bits. The reference SystemC simulator has a very low-performance implementation
of such ports.

2.2.  OSCI SystemC IEEE 1666
The development of SystemC as a standard for modeling hardware started in 1996. Version
2.0 of the proposed standard was released by the Open SystemC Initiative (OSCI) in 2002. In
2006, SystemC became IEEE standard 1666-2005 [10].
Most software languages are not particularly suited to modeling hardware systems1. SystemC
was developed to provide features that facilitate hardware modeling, in particular to model the
parallelism of hardware, in a mainstream programming language.

1 There are some exceptions, most notably Simula67, one of the languages which inspired C++. In some respects it
is remarkably like SystemC.
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An important objective was that software engineers should be comfortable with using SystemC,
even though it is a hardware modeling language. Rather than invent a new language, SystemC
is based on the existing C++ language. SystemC is a true super-set of C++, so any C++ program
is automatically a valid SystemC program.

SystemC uses the template, macro and library features of C++ to extend the language. The
key features it provides are:

• A C++ class, sc_module, suitable for defining hardware modules containing parallel
processes.

Note
Process is a general term in SystemC to describe the various ways of
representing parallel flows of control. It has nothing to do with processes in
the Linux or Microsoft Windows operating systems.

• A mechanism to define functions modeling the parallel threads of control within
sc_module classes;

• Two classes, sc_port and sc_export to represent points of connection to and from a
sc_module;

• A class, sc_interface to describe the software services required by a sc_port or provided
by a sc_export;

• A class, sc_prim_channel to represent the channel connecting ports;

• A set of derived classes, of sc_prim_channel, sc_interface, sc_port and sc_export to
represent and connect common channel types used in hardware design such as signals,
buffers and FIFOs; and

• A comprehensive set of types to represent data in both 2-state and 4-state logic.

The full specification is 441 pages long [10]. The OSCI reference distribution includes a very
useful introductory user guide and tutorial [12].

2.3.  OpenCores and the OpenRISC Project
The OpenRISC 1000 project forms part of the OpenCores organization (www.opencores.org).
Its aim is to create a free open source computing platform, comprising:

• An open source 32/64 bit RISC/DSP architecture;

• A set of open source implementations of the architecture; and

• A complete open source tool chain and operating system.

The OpenRISC 1000 project has resulted in Verilog for a 32-bit processor core, the OpenRISC
1200 (sometimes known as OR1200) and a complete reference System on Chip (SoC) design
using that core, ORPSoC.

OpenRISC 1000 is a traditional RISC load-store architecture. Optional operands for
multiplication and division may be added and there are optional data and instruction caches
and MMUs.

A particularly useful feature is the l.nop opcode. This takes an optional 16-bit constant
operand, which is placed in the low 16-bits of the instruction word. This field has no impact
on the execution of the instruction, but may be analyzed as required by external test benches.

2.3.1.  The OpenRISC Reference Platform System-on-Chip (ORPSoC)
ORPSoC is a complete SoC based on the OpenRISC 1000. It combines the processor with
SRAM, flash memory and a range of peripherals as shown in Figure 2.1.

http://www.opencores.org
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Debug
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Tick
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Figure 2.1.  The OpenRISC Reference Platform System-on-Chip (ORPSoC).

The full design is around 150k gates + memories. It runs on standard Altera and Xilinx FPGA
boards and is also available commercially from Flextronics.

2.4.  Icarus Verilog
Icarus Verilog [9] is an open source event driven simulator, offering an interface and behavior
similar to commercial offerings such as Cadence NC, Synopsys VCS and Mentor Graphics
ModelSim.

When developing cycle accurate models, it is important to compare behavior with event driven
simulation, to understand any differences, and ensure they are not significant.

Icarus Verilog is capable of simulating ORPSoC at 1-2kHz on a standard PC running Linux.

2.5.  Verilator
Verilator [13] is an open source tool which generates cycle accurate C++ and SystemC models
from synthesizable Verilog RTL. The models follow 2-state, zero delay, synthesizable semantics.
Experimental versions are also able to process VHDL.

The functionality is similar to commercial offerings from ARC (VTOC) and Carbon Design
Systems (Model Studio).

A Verilator SystemC model of ORPSoC simulates at up to 130kHz on a standard Linux PC.
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Chapter 3.  The Example Design
The demonstration system is based on a fully configured ORPSoC with data and instruction
caches, data and instruction MMUs, multiply and divide instructions, 2MB Flash and 2MB
SRAM. SRAM and all other memories are implemented as generic flip-flop memory. Flash
memory is modeled as generic SRAM initialized from a file.

3.1.  Memory Map
The memory map used is shown in Figure 3.1. This is slightly different from the memory map
described in the ORPSoC documentation. However these are the values used in the standard
distribution, which is a known working configuration.

90000000

92000000

94000000

97000000

9d000000

00000000

00200000

04000000

04200000

SRAM

Flash

UART

Ethernet

PS2

VGA

Audio

Figure 3.1.  ORPSoC memory map.
During reboot, instruction fetches have 0x0400000 added. This means that the reboot
sequence (which starts at 0x100) will fetch code from the Flash memory (0x04000100). This
allows initial boot up code to be copied down into RAM.

3.2.  Interrupt Assignment
The OpenRISC 1000 CPU incorporates a programmable interrupt controller, capable of
handling up to 20 interrupt lines. These are assigned as shown in Table 3.1.

Number Assignment
0-1 Unused
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Number Assignment
2 UART

3 Unused

4 Ethernet

5 PS/2

6-19 Unused

Table 3.1.  ORPSoC interrupt assignment

3.3.  Test Bench Modeling of Peripherals
None of the peripherals are modeled—all external ports are tied off to appropriate values.

The behavior of ORPSoC is tracked through use of the OpenRISC 1000 l.nop instruction. These
are incorporated in the test applications as shown in Table 3.2

Opcode Action
l.nop 1 End simulation, with the value in GPR 3 as return code.

l.nop 2 Report the value in GPR 3.

l.nop 4 Print the value in GPR 3 as a character

Table 3.2.  l.nop usage with the example ORPSoC platform

All other l.nop argument values are ignored.

The test bench implements a monitor function to detect a new l.nop instruction. It implements
the appropriate functionality.

3.4.  Test Software Application
The test application is the the Dhrystone 2.1 benchmark [4]. A small support library based on
the l.nop instructions described in the previous section is used to print out the results.

3.5.  Use of the OpenRISC 1000 l.nop Instruction
The OpenRISC 1000 no-operation instruction, l.nop (32'h1500_0000), can take an optional 16-
bit immediate parameter, which forms the least significant 16-bits of the instruction word.
This value is ignored by the CPU, but may be monitored by test benches

In ORPSoC this is used to provide I/O and control functions for the C code running on the
processor.

• l.nop 1 (32'h1500_0001). Terminates execution, with the value in GPR 3 as return code.
Thus the C library routine exit is implemented as:

void exit (int i)
{
  asm("l.add r3,r0,%0": : "r" (i));
  asm("l.nop %0": :"K" (NOP_EXIT));
  while (1);
}
   

• l.nop 2 (32'h1500_0002). Provides a reporting function. The value in GPR 3 is printed
in hex.
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• l.nop 3 (32'h1500_0003). Provides printf functionality, with the arguments passed
according to the OpenRISC 1000 Application Binary Interface (ABI). Not currently
implemented.

• l.nop 4 (32'h1500_0004). An Embecosm addition. The least significant byte of GPR 3 is
printed as a character. Thus the C function putc can be implemented as:

void putc(int value)
{
  asm("l.addi\tr3,%0,0": :"r" (value));
  asm("l.nop %0": :"K" (NOP_PUTC));
}
   

More complex library routines (to print strings, numbers etc) can then be built up from
this.

3.6.  Module Hierarchy and File Organization
The Verilog hierarchy is shown in Figure 3.2.

orpsoc_fpga_top

orpsoc_bench or1200_monitor

tcop_top dbg_top sram_top eth_top uart_top

or1200_top flash_top audio_top ps2_top ssvga_top

CPU
Subsystem

Memory
Subsystem

Peripheral
Subsystem

Figure 3.2.  ORPSoC Verilog module hierarchy.

The main hierarchy is the ORPSoC. The device under test (DUT) starts at orpsoc_fpga_top.
This instantiates the modules for the bus interconnect (tcop_top), the CPU/debug subsystem,
the flash & SRAM memory subsystem and the peripheral subsystem.

For event driven simulation with Icarus Verilog, the DUT is instantiated by the top level test
bench, orpsoc. Alongside this sits the monitor module, or1200_monitor, which implements
the l.nop functionality. For the Verilator model, these functions will be provided by SystemC
modules.

The files for this example are provided as a single compressed tar file, and include a snapshot
of the current ORPSoC source tree for convenience. However the ORPSoC source may be
downloaded from www.opencores.org and used independently if preferred.

The code is set up, so the ORPSoC code is not changed. Any files that are changed are placed
in mirror directories in the custom code, and preferentially selected when building the model
by specifying the search path.

http://www.opencores.org/
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!
Caution
ORPSoC is constructed from several different projects (the CPU, the debug unit,
the peripherals etc). Each has source code in its own directory, and each directory
has its own timescale.v file which is included.

When the various components are brought together, the header search paths (i.e.
+incdir+ directories) are combined. However since the timescale file has the same
name in each component (timescale.v) there is no guarantee that a component
will actually include its intended timescale file.

This is a potential source of confusion, but the current arrangement works, so has
not been changed.

3.6.1.  Distribution Code Organization
The code is organized into a number of directories:

Top level directory This contains the Makefile used to build the system and the source
files for the main Verilator test bench in SystemC (OrpsocMain.cpp and
OrpsocMain.h).

orp_soc This directory is a snapshot of the current ORPSoC source tree from
www.opencores.org. Described in more detail below.

local This directory is a shadow of the orp_soc directory. Changed versions
of files are placed here (thus preserving the original source), and
preferentially selected when building the model by setting the search
path.

sim This directory contains the command files used to build event driven
simulation models using Icarus Verilog (*.scr).

sysc-modules This directory contains hand written SystemC modules which are part
of the SystemC test bench (Or1200MonitorSC and ResetSC).

verilator-model This directory contains the command files to build the various Verilator
models (*.scr), a class, OrpsocAccess, giving access to signals inside
the Verilator model, and a SystemC module, TraceSC, generating VCD
trace information if required.

Original ORPSoC Source Code Organization
The original ORPSoC source tree snapshot can be found in directory orp_soc of the
distribution. The subdirectories are:

bench The test bench code. Subdirectory verilog contains ORPSoC specific Verilog
code. These include timescale.v specifying the `timescale for use across the
system, and bench_defines.v setting system wide `define constants.

doc Documentation about ORPSoC. The top level file ORP.txt specifies a memory
map and interrupt assignment, but this does not match the actual memory map
used in the Verilog RTL (see Section 3.1).
Separate subdirectories, dbg_interface, ethernet, or1200 and uart16550
document their corresponding sub-systems and peripherals.

rtl This is the Verilog RTL code for ORPSoC. The main verilog subdirectory
contains the top level FPGA header file, xsv_fpga_defines.v, and module
definition, xsv_fpga_top.v, together with two "glue logic" modules, tc_top.v and
tdm_slave_if.v.

http://www.opencores.org/
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Separate subdirectories audio, dbg_interface, ethernet, mem_if, or1200, ps2,
ssvga and uart16550 contain the Verilog for the core CPU, debug unit, Flash and
SRAM memory interfaces and peripherals. Directories with older versions of the
RTL for some peripherals are also present.

sw This is the target software, which can be loaded into the ORPSoC Flash memory
for various tests. They are all designed to be compiled using the OpenRISC 1000
tool chain (see [6]).
The utilities in the utils directory must be built first, followed by the support
libraries in support. The other directories may be built in any order. In general
versions of the software are provided for use with and without caches.

!
Caution
There does seem to be an assumption in these code examples that
ORPSoC is built with multiply (l.mul, l.mulu) and divide (l.div,
l.divu) instructions.

Unfortunately this is not consistent with the default settings in the
Verilog RTL.

3.7.  Modifications to the ORPSoC Code
Initially six files are modified from the original ORPSoC source code. These modified files are
placed in the corresponding custom code directory.

• bench/verilog/bench_defines.v. The clock half-period is set to 50 ns, corresponding to
a clock rate of 10MHz.

• bench/verilog/or1200_monitor.v. The standard ORPSoC implementation includes a
great deal of logging functionality. This is not of relevance to the typical applications of
cycle accurate modeling in firmware development. The custom version is stripped down
to provide just the custom l.nop functions (see Section 3.5).

• bench/verilog/orpsoc_bench.v. The original top level module was bench/verilog/
xess_top.v and represented a top level wrapper for a Xilinx FPGA, and incorporated
Verilog models of some of the peripheral behavior.
The intention for the Verilator SystemC model is that any external functionality is
provided by SystemC modules. orpsoc_bench.v is a rewrite of xess_top.v to provide a
thin test bench to allow the model also to be run under event-driven simulation.

In this simple implementation, the external ports are tied off, but could be connected to
Verilog behavioral models in the future.

• rtl/verilog/orpsoc_fpga_top.v. This is the top level of the FPGA being modeled, and
based closely on xsv_fpga_top.v in the ORPSoC source. However some aspects have
been simplified. There is no boot CPLD, or TDM conversion. Since all memory is internal,
there is no need for external memory ports for the Flash and SRAM.
This top level module of the actual device is completely independent of any Verilog
test bench (since with Verilator it will use a SystemC test bench), so does not include
bench_defines.v.

• rtl/verilog/orpsoc_fpga_defines.v. This is a close derivative of the original rtl/
verilog/xsv_fpga_defines.v. However the `define TARGET_VIRTEX is removed, since
no Xilinx (the manufacturer's of the Virtex FPGA range) IP is used. A minor bug in the
definition of APP_ADDR_PERIP is also corrected.

• rtl/verilog/or1200_defines.v. This customizes the CPU for this application. Even
though it is notionally a FPGA design, caches and MMUs are enabled (by defining
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OR1200_NO_DC, OR1200_NO_IC, OR1200_NO_DMMU and OR1200_NO_IMMU) and hardware
division is enabled (by defining OR1200_IMPL_DIV)

• rtl/verilog/ssvga/ssvga_fifo.v, rtl/verilog/ssvga/ssvga_top.v, rtl/verilog/
ssvga/ssvga_dpram_4x8x16.v and rtl/verilog/ssvga/ssvga_dpram_4x16x16.v. Almost
the entire ORPSoC design provides options to use different manufacturer's RAM block
models, or a generic flip-flop model. This is managed through `ifdef directives, using
`define values from the main header files.
The exception is the VGA peripheral, which assumes availability of Xilinx RAMB4
models. To fix this, modified versions of the two VGA source files (rtl/verilog/ssvga/
ssvga_fifo.v and rtl/verilog/ssvga/ssvga_top.v), together with suitable generic
dual ported RAM blocks (rtl/verilog/ssvga/ssvga_dpram_4x8x16.v and rtl/verilog/
ssvga/ssvga_dpram_4x16x16.v).

3.8.  Building the Example
To facilitate building the models, a Makefile is provided in the top level directory. Three targets
are provided.

• make simulate will run an event driven simulation using Icarus Verilog (in the sim sub-
directory).

• make verilate will build and then run a SystemC cycle accurate model using Verilator

• make clean will clean out all generated files.

For the simulate target, the time used by the iverilog compilation and the vvp execution are
recorded (with time -p).

For the verilate target, the time used to create the Verilated model and the execution time of
the complete SystemC model are recorded (also with time -p).

3.8.1.  Command Files
The Verilog source files and header directories to be used when modeling are specified
in command files in the sim and verilator-model directories for event driven simulation
and cycle accurate SystemC modeling respectively. The default is cf-baseline.scr, but an
alternative may be specified through the COMMAND_FILE macro. For example.

make simulate COMMAND_FILE=cf-baseline-5.scr
 

When writing command files, a number of macros may be used for clarity.

$BENCH_DIR Replaced by the location of the original ORPSoC test bench
Verilog directory. This depends on where the code has been
unpacked. For example if it is in ~/orp_soc, then this macro
will be replaced by ~/orp_soc/bench/verilog.

$RTL_DIR Replaced by the location of the original ORPSoC device Verilog
directory. This depends on where the code has been unpacked.
For example if it is in ~/orp_soc, then this macro will be
replaced by ~/orp_soc/rtl/verilog.

$BENCH_LOCAL Replaced by the location of the directory containing custom
test bench Verilog. This is always in a fixed place in the
hierarchy and the macro will be replaced by a reference to
bench/verilog.
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$RTL_LOCAL Replaced by the location of the directory containing custom
device Verilog. This is always in a fixed place in the hierarchy
and the macro will be replaced by a reference to rtl/verilog.

3.8.2.  Additional Flags
Additional flags may be passed to Icarus Verilog and Verilator by use of the VFLAGS macro. Of
particular use are the flags to generate a VCD trace:

make simulate VFLAGS=-DORPSOC_DUMP
make verilate VFLAGS=-trace
 

The target application is a Dhrystone simulation. The number of loops through this simulation
can be set using the NUM_RUNS macro, which defaults to 1.

make verilate NUM_RUNS=100
 

Note
The software build is not sensitive to changes in the value of NUM_RUNS. If the value
is changed, make clean must be used to force a recompile.
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Chapter 4.  Building the Baseline Simulation
Verilator is not a complete alternative to traditional event driven simulation. Its value is
for modeling where the detail (and simulation performance hit) of 4-state logic and intra-
cycle behavior are not needed, and where efficient interfacing to software environments are
essential.

It is thus important that the Verilator model is consistent throughout with event driven
simulation, and so the initial stage of any Verilator modeling is to build the baseline simulation
against which it will match. There are three additional reasons why such a baseline simulation
is important

1. Because Verilator follows 2-state, zero delay synthesis semantics, some changes will
be needed to the source code. These most commonly will involve substituting non-
synthesizable parts of the design. Checking the Verilator model using the substituted
code against the original event driven simulation is an essential step.

2. Verilator models are used typically in environments where performance is very
important. In many cases it is possible to rewrite key parts of the Verilog to be far more
efficient when modeled cycle accurately. This is commonly the case for memories, where
for example, it is not necessary to individually buffer each input and output bit. Again it
is essential to be able to compare rewritten code against the original simulation behavior.

3. Finally Verilator includes powerful linting tools, and will typically throw up huge
numbers of diagnostic warnings. It makes a great deal of sense to address all these
warnings. They address issues that may cause problems with synthesis and gate level
verification. They also highlight areas that can badly impact on model performance.

4.1.  The Command File
The command file for this baseline simulation is found in sim/cf-baseline.scr.

The first part of this file sets up the header directories. The local custom directories are
specified in preference where appropriate.

+incdir+$BENCH_LOCAL
+incdir+$BENCH_DIR
+incdir+$RTL_LOCAL
+incdir+$RTL_LOCAL/or1200
+incdir+$RTL_DIR/or1200
+incdir+$RTL_DIR/dbg_interface
+incdir+$RTL_DIR/audio
+incdir+$RTL_DIR/ethernet
+incdir+$RTL_DIR/ps2
+incdir+$RTL_DIR/uart16550
+incdir+$RTL_DIR/ssvga
      

As noted earlier, there are multiple instances of timescale.v, with different values for time
unit and precision. However with all Verilog files will find the first once, which is in $BENCH_DIR
(1ns/10ps).

There are three test bench files: the main ORPSoC test bench and the ORPSoC monitor for
l.nop opcodes.
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$BENCH_LOCAL/orpsoc_bench.v
$BENCH_LOCAL/or1200_monitor.v
      

The top level module of the DUT, orpsoc_fpga_top is then specified. The bus interconnect
instantiated by orpsoc_fpga_top, tc_top, is also specified.

$RTL_LOCAL/orpsoc_fpga_top.v
$RTL_DIR/tc_top.v
      

The sub-components of the FPGA are then specified: the OR1200 CPU, the debug interface,
flash and SRAM and audio, Ethernet, keyboard, UART and video peripherals.

4.2.  Running the Baseline Simulation
The simulation is run with the command:

make simulate COMMAND_FILE=cf-baseline.scr NUM_RUNS=1000
      

The Makefile compiles the target software using the OpenRISC 1000 tool chain, then compiles
the simulation with iverilog and runs it with vvp. The compilation is error free:

cd sim/run && time -p iverilog -c iv-processed.scr 
real 1.75
user 1.48
sys 0.30
      

The output from the execution is:

$readmemh(../src/flash.in): Not enough words in the read file for requested rang
e.
(orpsoc_bench.i_orpsoc_fpga.uart_top) UART INFO: Data bus width is 32. Debug Int
erface present.

(orpsoc_bench.i_orpsoc_fpga.uart_top) UART INFO: Doesn't have baudrate output

Execution starts, 1000 runs through Dhrystone
Begin Time = 5
End Time   = 116421
OR1K at 10 MHz  (+PROC_6)
Microseconds for one run through Dhrystone: 116us / 1000 runs
Dhrystones per Second:                      8589 
117975052.00 ns: l.nop report (deaddead)
117986152.00 ns: l.nop exit (00000000)
real 839.00
user 837.40
sys 0.57
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The warning from $readmemh can be ignored—the OpenRISC 1000 utilities do not pack the
program image up to the full size of the actual memory to save file space. There are then a
couple of diagnostic messages from the UART

The remainder of the output is generated by the target OpenRISC 1000 program executing
within the model. The output is generated by use of l.nop 4, with a report at the end (deaddead)
using l.nop 2 and termination with return code 0 using l.nop 1.

4.3.  Baseline Simulation Performance
These data sets were all recorded on the author's workstation, a 2GHz Core2 Duo E2180, with
1MB cache/processor and 2GB RAM, running Fedora 9 Linux. In all cases 1000 loops through
the Dhrystone benchmark was used. The figures presented are the average of at least 6 runs.

Total processor time for elaboration was 1.78 s and for simulation was 796.84 s. Net simulation
performance was 1.48kHz.

Note
Throughout this application note, results will be given showing:

• The time taken to elaborate the simulation (or build the model in the case
of Verilator).

• The time taken to run the simulation or model.

• The model performance in kHz, obtained by dividing the number of cycles
models by the time taken to run the simulation or model.

Cycle accurate models are typically used in scenarios, where the model is created
once and used many times, so the run-time performance is the critical figure.
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Chapter 5.  The SystemC Test Bench
Before building the Verilator model it is necessary to consider the test bench, which will replace
orpsoc.v and or1200_monitor.v. This chapter looks at the overall structure of the test bench,
and the detailed implementation of the pure SystemC components.

There are also a number of components which tie in closely with the actual Verilator model
(for example to access signals in the model, or to generate VCD traces from the underlying
model). These are covered in the chapter on building the Verilator model (Chapter 6).

The structure of the SystemC test bench is not that different to the Verilog test bench used
with event driven simulation (see Chapter 4). The DUT is provided by the Verilator model
(class Vorpsoc_fpga_top) and the monitor for l.nop is hand-written as a SystemC class,
Or1200MonitorSC.

Two further SystemC classes are needed, one to generate a reset signal (ResetSC) and a second
to provide VCD trace functionality of the underlying Verilator model (TraceSC).

The top level of the test bench (the equivalent of orpsoc_bench) is provided by the sc_main
function.

5.1.  The SystemC Modules of the Test Bench

5.1.1.  Vorpsoc_fpga_top
This SystemC module class is automatically generated by Verilator. The class name is taken
from the top level module (orpsoc_fpga_top preceded by V.

The input and output ports of this module are mapped to SystemC sc_in and sc_out ports.
Single bit ports are of type bool. Larger ports are of type uint32_t.

In this example there are no ports larger then 32 bits. If there were, then they would use either
uint64_t or the SystemC sc_bv types.

Note
SystemC offers its own set of types for ports of arbitrary width. However in the
reference library, the implementation of these types can be very inefficient. Hence
the preference for stdint.h types from C++.

!
Caution
Verilator also supports inout ports, which are mapped to sc_inout. However inout
ports are usually associated with tristate logic, for which Verilator currently only
has rudimentary support. Thus there are no such ports in this example.

5.1.2.  Or1200MonitorSC
The functionality of this class is identical to that of its Verilog counterpart. On each positive
clock edge, the freeze signal for the write back pipeline stage in the CPU control unit is checked.
If the value is clear, the current instruction being executed is read. If the instruction is a
special l.nop instruction, the appropriate behavior is implemented.

The class has a single port, clk of type sc_in<bool>, which is connected to the system clock.

Constructor
Access to signals within the Verilator ORPSoC model is provided by the OrpsocAccess class,
an instance of which is passed to the constructor.



17 Copyright © 2009 Embecosm Limited

The implementation of OrpsocAccess is covered in the chapter on Verilator modeling Chapter 6.
It provides a number of methods to access signals in the model. Those of particular interest
here are:

getWbFreeze Gives the bool value of the CPU control unit write back freeze signal,
wb_freeze.

getWbInsn Gives the uint32_t value of the CPU control unit write back instruction,
wb_insn.

getGpr (regNum) Get the value of the ORPSoC GPR regNum from the CPU register file in rf_a.

The constructor declares a SystemC method, checkInstruction, which will check for a l.nop
instruction on the positive edge of each clock.

checkInstruction

This function is called on the positive edge of each clock cycle. It uses the accessor class
getWbFreeze and getWbInsn functions to check for special l.nop instructions. It implements
behavior as follows:

l.nop 1 Gets the value in GPR 3 using the accessor getGpr function, which is the return
code from the function. Prints out a time stamp (using the SystemC function,
sc_time_stamp) followed by a message that the simulation is exiting with the
return code obtained. Then calls the SystemC function, sc_stop to terminate
model execution.

l.nop 2 Gets the value in GPR  3 using the accessor getGpr function. Prints out a
time stamp (using the SystemC function, sc_time_stamp) followed by a message
reporting the value found in GPR 3.

l.nop 3 This is the printf function, but is not implemented. Prints out a time stamp
(using the SystemC function, sc_time_stamp) followed by the text "printf".

l.nop 4 Gets the value in GPR 3 using the accessor getGpr function, the bottom 8 bits of
which are the character to print. Prints the character to standard output, and
then flushes it. This avoids any issues with C++ library buffering if redirecting
the output during a slow run.

5.1.3.  ResetSC
This module is used to generate a reset signal at start up for a defined number of clock cycles.

It takes as input port the system clock and for convenience generates both active high and
active low reset signals. Only the active low reset signal is used in this application note.

sc_core::sc_in<bool>   clk;
sc_core::sc_out<bool>  rst;
sc_core::sc_out<bool>  rstn;
 

Constructor
The constructor takes an optional argument of the number of cycles of reset to provide at start
up. If not given, this defaults to 5. This is used to initialize the reset counter.

A SystemC method, driveReset is declared which is sensitive to the negative edge of the clock.
Releasing the reset on the negative edge of the clock in a cycle-accurate environment means
the model will see the released reset first on a positive clock edge.
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driveReset

This function counts down the reset counter. While the value is positive, it drives the reset
signals. Thereafter it releases the signals.

5.1.4.  TraceSC and OrpsocAccess
These classes implement respectively VCD tracing and signal access in the Verilator model.
Because they are so intimately involved with the Verilator model, their description is postponed
to that chapter (Chapter 6).

5.2.  Putting the System Together
The top level of the SystemC model, corresponding to orpsoc_bench.v is found in
OrpsocMain.cpp. This defines the SystemC sc_main function.

This includes the header file OrpsocMain.h, which has the system wide definitions, and
corresponds to the Verilog definitions in orpsoc_defines.h.

The headers for all the classes that will be used must also be included:

#include "OrpsocMain.h"

#include "Vorpsoc_fpga_top.h"
#include "OrpsocAccess.h"
#include "TraceSC.h"
#include "ResetSC.h"
#include "Or1200MonitorSC.h"
      

5.2.1.  sc_main
A SystemC clock, clk is declared of type sc_clock, which will form the main system clock.

This followed by declarations of signals to connect all the ports on the main ORPSoC module.
These include reset, JTAG and all the external peripherals (audio, Ethernet, keyboard, UART
and video).

Variables are declared to reference the accessor class (accessor) and SystemC modules
(orpsoc, trace, reset, monitor). New instances of these are then instantiated.

The modules are then connected to the signals. The vast majority of these are to the main
Vorpsoc_fpga_top instance. The main clock signal is used for both the main system clock and
JTAG clock, thus ensuring they will be synchronous.

There are no explicit peripheral models, or JTAG interface, so peripheral input signals are tied
off appropriately.

With the modules connected, the model is set to run for an indefinite period by a call to
the SystemC function sc_start. Execution will only terminate if the program being executed
includes a l.nop 1 opcode, which will cause the monitor module to call the SystemC function
sc_stop.

If and when execution does terminate, the space allocated for modules is deleted before the
sc_main function returns.



19 Copyright © 2009 Embecosm Limited

Chapter 6.  Building the Initial Verilator Model
Building a Verilator model has a number of traps for the unwary

• Verilator is a synthesis technology, so will reject any non-synthesizable constructs. This
can be a particular problem with third party models of memories.

• Verilator by default handles Verilog 1995, 2001, 2005 and SystemVerilog. The last can be
a particular nuisance, since SystemVerilog contains a number of new keywords, which
can break older Verilog code (for example do is now a keyword, but has commonly been
used as the name for the data out port of a memory).

• Verilator has a very strict linting system, which flags issues which can affect model
performance.

So it is not uncommon for Verilator to immediately throw errors on RTL which is supposedly
clean and synthesizable.

6.1.  Fixing the Initial Errors
It is simple to take the baseline command file from the Icarus Verilog simulation (see
Chapter 4) and modify it for use with Verilator. All that is needed is to remove the reference
to orpsoc_bench.v and or1200_monitor.v.

As noted earlier, there are multiple instances of timescale.v, with different values for time
unit and precision. Now all the Verilog files form a single SoC design, and all their header
directories are specified using +incdir+. So now all components will use the same timescale.v,
the copy in $RTL_DIR (orp_soc/rtl/verilog). This specifies 1ps/1ps, a different value to that used
in simulation, but does not have any practical impact.

The model can be built with:

make verilate COMMAND_FILE=cf-baseline.scr
      

This immediately produces a slew of warnings and errors

%Warning-CASEX: ../orp_soc/rtl/verilog/or1200/or1200_alu.v:207: Suggest casez (w
ith ?'s) in place of casex (with X's)
%Warning-CASEX: Use "/* verilator lint_off CASEX */" and lint_on around source t
o disable this message.
%Warning-CASEX: ../orp_soc/rtl/verilog/or1200/or1200_alu.v:278: Suggest casez (w
ith ?'s) in place of casex (with X's)
%Warning-CASEX: ../orp_soc/rtl/verilog/or1200/or1200_alu.v:280: Suggest casez (w
ith ?'s) in place of casex (with X's)

...

%Warning-CASEX: ../orp_soc/rtl/verilog/or1200/or1200_mult_mac.v:196: Suggest cas
ez (with ?'s) in place of casex (with X's)
%Error: ../orp_soc/rtl/verilog/mem_if/flash_top.v:210: syntax error, unexpected 
')'
%Error: Cannot continue
%Error: Command Failed /home/jeremy/tools/verilator/verilator-3.700/verilator_bi
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n -Mdir . -sc -f v-processed.scr
      

The first step is to turn off the warnings, to allow the errors to stand out, using the VFLAGS
macro.

make verilate COMMAND_FILE=cf-baseline.scr VFLAGS=-Wno-lint
      

The result of this is:

%Error: ../orp_soc/rtl/verilog/mem_if/flash_top.v:210: syntax error, unexpected 
')'
%Error: Cannot continue
%Error: Command Failed /home/jeremy/tools/verilator/verilator-3.700/verilator_bi
n -Mdir . -sc -f v-processed.scr
      

Looking at the source file concerned (flash_top.v) shows the problem at line 210:

// synopsys translate_off
integer fflash;
initial fflash = $fopen("flash.log");
always @(posedge wb_clk_i)
        if (wb_cyc_i)
      

The problem is the use of the multi-channel descriptor form of $fopen, which is not supported
by Verilator. There are two solutions to this problem. A simple solution is to turn this into a
standard file descriptor open:

initial fflash = $fopen("flash.log", "w");
      

The alternative is to recognize that logging flash accesses is not of great interest to this
model (it is something of greater concern to a hardware verification engineer with event-driven
simulation).

Furthermore, this model will not be using external flash memory, and only loads its image
from file at start up. This is the time to replace flash_top.v by a much simpler model suitable
for cycle accurate use in our environment. This is provided in the local directory, rtl/verilog/
mem_if/flash_top.v.

Tip
There is always a balance between making the least possible change (minimizing
the risk of introducing behavioral bugs) and complete replacement. In general
making the least possible change is the right strategy.

However memories are usually central to a model's performance, and can often be
full of RTL structures, which are irrelevant to cycle-accurate modeling—for example
buffering each input and output bit. In these cases (as here), it is worth replacing
the original completely.

The value of having a baseline event driven simulation model now becomes clear:
VCD traces can be used to verify that the behavior of replacement models is
consistent.



21 Copyright © 2009 Embecosm Limited

The command file is modified to use the reference to this local version instead of the standard
flash_top.v:

$RTL_LOCAL/mem_if/flash_top.v
      

Verilator is now re-run:

make verilate COMMAND_FILE=cf-baseline-2.scr VFLAGS=-Wno-lint
      

Verilator immediately hits its next error.

%Error: ../orp_soc/rtl/verilog/mem_if/sram_top.v:236: syntax error, unexpected '
)'
%Error: Cannot continue
%Error: Command Failed /home/jeremy/tools/verilator/verilator-3.700/verilator_bi
n -Wno-lint -Mdir . -sc -f v-processed.scr
      

Exactly the same issue with logging in the SRAM model:

integer fsram;
initial begin
        fsram = $fopen("sram.log");
        for (i = 0; i < 2097152; i = i + 1)
                mem[i] = 0;
      

As before, the solution in this case is to replace sram_top.v with a simplified version suitable
for cycle accurate modeling. We then run Verilator again:

make verilate COMMAND_FILE=cf-baseline-3.scr VFLAGS=-Wno-lint
      

The next problem materializes:

%Error: ../orp_soc/rtl/verilog/ethernet/eth_wishbone.v:564: syntax error, unexpe
cted do, expecting IDENTIFIER
%Error: Cannot continue
%Error: Command Failed /home/jeremy/tools/verilator/verilator-3.700/verilator_bi
n -Wno-lint -Mdir . -sc -f v-processed.scr
      

Note
It will be clear that getting rid of errors in Verilator can be quite tedious, because
most errors will cause compilation to stop. This is a common problem, even with
commercial tools, because of the nature of Verilog. All files depend on each other
(they are not modular in the software sense), so a failure in one affects all the others
in unknown ways.

This error is a consequence of Verilator being able to process all flavors of Verilog and
SystemVerilog. In SystemVerilog do is a keyword, and may not be used as a variable.
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The correct fix is to replace the occurrences with a different variable name. However the short
term fix is to restrict Verilator to just a particular language, in this case Verilog according to
IEEE 1364-2001. This is achieved by using Verilator's -language option:

make verilate COMMAND_FILE=cf-baseline-3.scr \
              VFLAGS="-Wno-lint -language 1364-2001"
      

The next error is an example of Verilator requiring synthesizable RTL as its input:

%Error: ../orp_soc/rtl/verilog/ps2/ps2_translation_table.v:181: Unsupported: Ver
ilog 1995 reserved word not implemented: repeat
%Error: ../orp_soc/rtl/verilog/ps2/ps2_translation_table.v:181: syntax error, un
expected '(', expecting case or casex or casez or if
%Error: Cannot continue
%Error: Command Failed /home/jeremy/tools/verilator/verilator-3.700/verilator_bi
n -Wno-lint -language 1364-2001 -Mdir . -sc -f v-processed.scr
      

Here is the code in ps2_translation_table.v which causes the problem.

always@(posedge clock_i or posedge reset_i)
begin
    if ( reset_i )
        ram_out <= #1 8'h0 ;
    else if ( translation_table_enable )
    begin:get_dat_out
        reg [7:0] bit_num ;

        bit_num = translation_table_address[4:0] << 3 ;

        repeat(8)
        begin
            ram_out[bit_num % 8] <= #1 ps2_32byte_constant[bit_num] ;
            bit_num = bit_num + 1'b1 ;
        end
    end
end
      

According the the IEEE standard, repeat is not synthesizable, even if, as in this case, it has
a constant argument and a clear synthesizable meaning.

The issue is confused, because some commercial synthesis tools will accept constructs like
this, even though they are not permitted in the standard.

In this case the fix is very simple. The contents of the always block are just written out in full:

        ram_out[bit_num % 8] <= #1 ps2_32byte_constant[bit_num] ;
        bit_num = bit_num + 8'b1 ;
        ram_out[bit_num % 8] <= #1 ps2_32byte_constant[bit_num] ;
        bit_num = bit_num + 8'b1 ;
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        <5 more times>

        ram_out[bit_num % 8] <= #1 ps2_32byte_constant[bit_num] ;
        bit_num = bit_num + 8'b1 ;
      

The modified version of ps2_translation_table.v is placed in the local directory (rtl/verilog/
ps2), the command file altered and Verilator rerun.

This time Verilator does not encounter any errors, but a whole load of new warnings. The flag
-Wno-lint turns off many warnings, but not all. Two warnings in particular are common:

• Warning COMBDLY. Use of non-blocking assignment (delayed assignment) in
combinatorial always blocks. This issue is discussed in more detail in Chapter 7, but
indicates a coding style that may cause unexpected behavior in a cycle accurate model.

• Warning UNOPTFLAT. The presence of combinatorial loops, which can seriously damage
model performance. This issue is discussed in more detail in Chapter 7, where it is a
fruitful source of performance enhancements.

For now both these warnings can be explicitly turned off using the flags -Wno-COMBDLY and -
Wno-UNOPTFLAT.

make verilate COMMAND_FILE=cf-baseline-4.scr \
   VFLAGS="-Wno-lint -Wno-COMBDLY -Wno-UNOPTFLAT -language 1364-2001"
      

This is sufficient for Verilator to successfully process the entire source and generate a model.
However the complete SystemC model will not built—some header files needed by the C++
code are missing.

These headers are part of the system for accessing signals within the Verilator model. These
must now be added.

6.2.  Accessing Signals in Verilator Models
By default Verilator does not provide access to internal signals within the Verilog hierarchy.
However it provides two mechanisms for such access:

• Mark the signal with a verilator public comment. It may then be accessed directly
from the SystemC test bench.

• Define a function and/or task to access the signal, and mark it with a verilator public
comment. This is the preferred approach.

In either case, values of up to 64 bits are stored in the smallest appropriate C++ unsigned
type. (uint8_t, uint16_t, uint32_t, uint64_t).

In practice SystemC programs will just use bool, uint32_t and uint64_t for the results, relying
on C++ to automatically cast the values. This is then consistent with the set of types used for
SystemC module signals.

Signals wider than 64-bits are represented as arrays of uint32_t, with the least significant
bits in the lowest numbered element. Where the number of bits is not a multiple of 32, the
odd bits are the least significant bits of the highest numbered element.

For example reg [47:0] r would be represented in a C++ array, uint32_t r[2]. Bits [31:0]
would be in C++ array r[0] and bits [47:32] would be in the 16 least significant bits of the
C++ array r[1].
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!
Caution
Verilator cannot handle results wider than 64 bits from functions. For such signals
either tasks must be used (with result via an output parameter), or the signal must
be directly accessed.

!
Caution
With cycle accurate models, such as those created by Verilator it is only meaningful
to update signals which are state-holding, that is the registers in sequential logic.
Updating wires, or registers used only in combinatorial logic, will have no effect.

6.2.1.  Module Hierarchy When Accessing Signals
In general Verilator flattens the Verilog module hierarchy when generating C++ or SystemC
models, and will generate just a small number of C++ classes (very often just one).

However when direct access to a signal is needed, Verilator must expose the hierarchy, and
will define multiple C++ classes, corresponding to the modules in the hierarchy to the signal.

For example with ORPSoC the top level SystemC module generated is Vorpsoc_fpga_top. As
shown in Section 5.2.1, this was used when instantiating the main ORPSoC module:

orpsoc = new Vorpsoc_fpga_top ("orpsoc");
 

However if the wb_freeze signal in the CPU control unit were to be accessed additional C++
classes would be declared. The signal's hierarchical references is:

orpsoc_fpga_top.or1200_top.or1200_cpu.or1200_ctrl.wb_freeze
 

Verilator creates public classes for all the intermediate modules in this hierarchy (or1200_top,
or1200_cpu and or1200_ctrl), each of which includes a pointer to the next level down in the
hierarchy. Thus the wb_freeze can be accessed from C++ through the top level module (orpsoc,
instantiated as above) as follows:

orpsoc->v->or1200_top->or1200_cpu->or1200_ctrl->wb_freeze
 

Notice that there is one intervening class, v, after the top level module. This is explained later.

To access these, the header files for the intervening modules must be included. These take
their name from the top level module, and the intermediate module, thus:

#include "Vorpsoc_fpga_top_or1200_top.h"
#include "Vorpsoc_fpga_top_or1200_cpu.h"
#include "Vorpsoc_fpga_top_or1200_ctrl.h"
 

All these intermediate modules are plain C++ classes, not SystemC modules. This is the
reason for the intervening class, v. The top level class, Vorpsoc_fpga_top is a SystemC module.
However it is only a wrapper for the plain C++ Verilator model of the top level module. Thus
the v points to the plain C++ model of the top level module, and is inserted after the SystemC
module at the top level. It has its own header, which must be included:
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#include "Vorpsoc_fpga_top_orpsoc_fpga_top.h"
 

Note
Verilator does provide a mechanism for accessing signals without breaking up the
C++ into separate modules. This is achieved by use of the verilator public_flat
comment. However the actual name of the variable referencing the signal may
then change with changes to the source Verilog, as Verilator alters its optimization
strategy.

However if access to a diverse range of signals in many modules is required, this
may be necessary to avoid the performance penalty of breaking the model into
many small classes.

6.2.2.  Direct Access to Verilator Model Signals
The wb_freeze signal is used as an example of direct access. It is declared in rtl/verilog/
or1200/or1200_ctrl.v, where it is an input to the module.

input  wb_freeze;
 

To declare the signal public, a verilator public comment must be inserted before the closing
semi-colon.

input  wb_freeze /* verilator public */;
 

!
Caution
The comment must be before the closing semi-colon.

Verilator will generate all the intervening classes for the signal's full hierarchy (see
Section 6.2.1):

orpsoc_fpga_top.or1200_top.or1200_cpu.or1200_ctrl.wb_freeze
 

The signal can then be accessed from C++, having included the headers for all the intermediate
classes:

#include "Vorpsoc_fpga_top_orpsoc_fpga_top.h"
#include "Vorpsoc_fpga_top_or1200_top.h"
#include "Vorpsoc_fpga_top_or1200_cpu.h"
#include "Vorpsoc_fpga_top_or1200_ctrl.h"

...

  Vorpsoc_fpga_top *orpsoc = new Vorpsoc_fpga_top ("orpsoc");

...

  bool  wb_freeze = orpsoc->v->or1200_top->or1200_cpu->or1200_ctrl->wb_freeze;
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Pitfalls with Direct Access to Signals
Verilator models assume all bits that are not significant to a signal's representation are zero.
So if a signal is updated, it is essential that unused bits are masked out.

6.2.3.  Access to Verilator Model Signals via Tasks and Functions
The recommended way to access signals is via a Verilog task or function. These are converted
by Verilator into C++ class functions. Inputs to tasks and functions become arguments passed
by value to the C++ function, while outputs become arguments passed by reference (and so
can be used for results).

Verilog tasks become C++ void functions, while Verilog functions become C++ functions with
a return type of a size appropriate to the result of the Verilog function (uint8_t, uint16_t,
uint32_t or uint64_t).

!
Caution
One limitation of Verilator is that it cannot handle functions which return values
of more than 64 bits. If this is required, an output argument of either a task or
function should be used.

For an example consider the 32-bit wb_insn register in the ORPSoC control unit. It's full
hierarchical reference is:

orpsoc_fpga_top.or1200_top.or1200_cpu.or1200_ctrl.wb_insn
 

It is declared as:

reg [31:0]  wb_insn;
 

A Verilog function is declared to give access to this register:

`ifdef verilator
   function [31:0] get_wb_insn;
      // verilator public
      get_wb_insn = wb_insn;
   endfunction // get_wb_insn
`endif
 

There are two items of note. First the function must include a verilog public comment
immediately after its declaration. Secondly functions without inputs are not permitted in IEEE
1364-2001, so this code must only be exposed to Verilator processing.

Verilator defines verilator, so this can be achieved by surrounding the code with
`ifdef verilator and endif.

The signal can then be accessed from C++, having included the headers for all the intermediate
classes:

#include "Vorpsoc_fpga_top_orpsoc_fpga_top.h"
#include "Vorpsoc_fpga_top_or1200_top.h"
#include "Vorpsoc_fpga_top_or1200_cpu.h"
#include "Vorpsoc_fpga_top_or1200_ctrl.h"
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...

  Vorpsoc_fpga_top *orpsoc = new Vorpsoc_fpga_top ("orpsoc");

...

  uint32_t  wb_insn =
    orpsoc->v->or1200_top->or1200_cpu->or1200_ctrl->get_wb_insn ();
 

Pitfalls with Accessing Signals using Tasks and Functions
Accessor functions typically require no inputs. This is acceptable to Verilator, but is not valid
Verilog according to IEEE 1364-2001. Thus (as in the example above), these functions must
be surrounded by `ifdef verilator and endif so they are only seen by Verilator

Verilator cannot make public functions with return values of greater than 64-bits. Such results
should be returned via an output argument, where they will be an array of uint32_t.

6.2.4.  Good Coding Practice when Accessing Verilator Signals
With the need to include many headers and use several depths of indirection, accessing
Verilator signals can make for very cluttered code.

The solution is to define a separate C++ accessor class, which provides this access
functionality, and makes the signals required available through concisely named accessor
functions.

This is the purpose of the OrpsocAccess in this application note. The SystemC model needs
access to two signals (wb_freeze and wb_insn) and the CPU register file, whose hierarchical
references are:

orpsoc_fpga_top.or1200_top.or1200_cpu.or1200_ctrl.wb_freeze
orpsoc_fpga_top.or1200_top.or1200_cpu.or1200_ctrl.wb_insn
orpsoc_fpga_top.or1200_top.or1200_cpu.or1200_fr.rf_a
 

The OrpsocAccess provides accessors for each of these. Its constructor is passed a pointer to
the top level SystemC module and saves pointers to the C++ modules:

OrpsocAccess::OrpsocAccess (Vorpsoc_fpga_top *orpsoc_fpga_top)
{
  or1200_ctrl = orpsoc_fpga_top->v->or1200_top->or1200_cpu->or1200_ctrl;
  rf_a        = orpsoc_fpga_top->v->or1200_top->or1200_cpu->or1200_rf->rf_a;

}
        

The accessor functions, getWbFreeze, getWbInsn and getGpr then use these. For example:

uint32_t
OrpsocAccess::getWbInsn ()
{
  return  (or1200_ctrl->get_wb_insn) ();

}
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6.3.  VCD Tracing
SystemC has its own tracing functions for generating VCDs (sc_create_vcd_trace_file,
sc_close_vcd_trace_file and sc_trace). However these only allow tracing of SystemC signals.

Tracing the signals in the underlying Verilator model requires a SystemC module which can
drive Verilator's trace functions. In this example, that module is TraceSC.

Tracing must be enabled when the Verilator model is created, by use of the -trace flag. This
can be conveniently passed in using the VFLAGS macro with the Makefile. When tracing has
been turned on the VM_TRACE macro is defined, so C++ code can be made conditional by using
#if VM_TRACE.

Tracing requires that the main model header is included and the SystemPerl VCD tracing
header. However the latter is only available if the -trace flag has been used, so its inclusion
must be conditional:

#include "Vorpsoc_fpga_top.h"

#if VM_TRACE
#include <SpTraceVcdC.h>
#endif
      

Tracing requires a SystemC method to be woken on each clock edge to generate trace output,
a pointer to the Verilator model and a pointer to a the SystemPerl trace file object of type
SpTraceVcdFile. This last is only available if the -trace flag has been used, so its definition
must be conditional on VM_TRACE.

6.3.1.  Constructor for the VCD Trace Module
The constructor only provides any functionality if tracing has been enabled using the -trace
flag. The entire code is conditional on VM_TRACE.

The constructor is passed a pointer to the Verilator model to be traced and the name of the VCD
file to use. A new instance of SpTraceVcdFile is allocated. Its time resolution is set to match
that of the SystemC model (obtained using sc_get_time_resolution). The Verilator model is
instructed to dump signals down to maximum depth (99) using its trace function. Finally the
named dump file is opened using the open function of the SystemPerl trace file.

In this example, a utility function, setSpTimeResolution is used to convert the time resolution
from the format in SystemC to the string used by SystemPerl.

Finally the constructor declares driveTrace to be a method sensitive to the clock. It will be
called on each clock edge and used to dump all traced signals.

6.3.2.  Destructor for the VCD Trace Module
The destructor is used to close the SystemPerl trace file. As with the constructor, this
functionality is only provided if tracing is enabled.

6.3.3.  The trace method, driveTrace
The code for this function is also provided only if tracing is enabled. On each clock edge it
calls the SystemPerl trace file's dump function to dump out the current state at the current
time stamp (obtained from sc_time_stamp).
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6.4.  Building the Complete Model
The command file is updated to use the locally modified versions of or1200_ctrl.v and
or1200_rfram_generic.v which have had signals and functions made public. The entire model
can be built, using 100 runs through Dhrystone to get a performance measure:

make verilate COMMAND_FILE=cf-baseline-5.scr \
     VFLAGS="-Wno-lint -Wno-COMBDLY -Wno-UNOPTFLAT -language 1364-2001" \
     NUM_RUNS=100
      

Verilator successfully builds the model and links to all the other SystemC modules. The model
then runs under SystemC

             SystemC 2.2.0 --- May 16 2008 10:30:46
        Copyright (c) 1996-2006 by all Contributors
                    ALL RIGHTS RESERVED
Loading flash image from sim/src/flash.in
(orpsoc.v.uart_top) UART INFO: Data bus width is 32. Debug Interface present.

(orpsoc.v.uart_top) UART INFO: Doesn't have baudrate output

Execution starts, 1000 runs through Dhrystone
Begin Time = 5
End Time   = 116421
OR1K at 10 MHz  (+PROC_6)
Microseconds for one run through Dhrystone: 116us / 1000 runs
Dhrystones per Second:                      8589 
117975200.00 ns: report (deaddead)
117986200.00 ns: Exiting (0)
SystemC: simulation stopped by user.
real 27.53
user 27.45
sys 0.02
      

Is is reassuring to note that the execution gave the same results and took exactly the same
number of clock cycles, 1,179,862 as the event-driven simulation (the event-driven simulation
showed a timing 48 ns less, reflecting the triggering of the $finish event mid-cycle).

6.5.  Baseline Verilator Performance
As with the Icarus Verilog simulation, these data sets were all recorded on the author's
workstation, a 2GHz Core2 Duo E2180, with 1MB cache/processor and 2GB RAM, running
Fedora 9 Linux, averaging the results from at least 6 runs.

Total processor time for model build (the equivalent of elaboration) was 13.94  s and for
execution was 27.67  s. The model build time is significantly higher than for simulator
elaboration, but the trade off is a much smaller execution time, leading to an overall reduction
in time. Model execution corresponds to a performance of 42.66 kHz.

6.5.1.  Comparison with Event Driven Simulation
These figures cannot be compared immediately against the results for Icarus Verilog in
Section 4.3. The Verilator results were obtained after several RTL code modifications. So a re-
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run of Icarus Verilog is needed with the same file list used with Verilator (but with the Verilog
test bench files added back).

make simulate COMMAND_FILE=cf-baseline-5.scr NUM_RUNS=1000
 

Total processor time for elaboration was 1.77 s and for simulation was 793.33 s, corresponding
to a simulation performance of 1.49 kHz.

The data for the three runs (baseline Icarus Verilog, baseline Verilator, revised Icarus Verilog)
are shown in Table 6.1.

Run Description Build Time Run Time Performance
Baseline Icarus
Verilog

1.78 s 796.84 s 1.48 kHz

Baseline Verilator 13.94 s 27.67 s 42.66 kHz

Revised Icarus Verilog 1.77 s 793.33 s 1.49 kHz

Table 6.1.  Comparison of model performance with Icarus Verilog and Verilator.

Even on gross performance, Verilator is much faster than Icarus Verilog. This is expected, since
Verilator is only 2-state and gives no modeling inside clock cycles.

Icarus Verilog shows no significant performance gain from the changes made to get the design
through Verilator. This is perhaps surprising, given this involved substituting simpler models
for flash and SRAM.

On the critical measure of model performance, Verilator (in this example) is nearly 30 times
faster than event driven simulation with Icarus Verilog.
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Chapter 7.  Optimizing the Verilator Model
The Verilator model in the previous chapter was generated at the expense of turning off most
of the warnings and restricting the language to IEEE 1364-2001 Verilog.

For much existing RTL, this is a satisfactory endpoint. However fixing the various warnings
can allow Verilator to generate better quality code. This chapter takes each of those warnings
in turn and shows how to handle them.

There is a general approach, which applies to most warnings in Verilator An individual
warning can be disabled by surrounding the troublesome code by a verilator lint_off  and
verilator lint_on  comments specific to the warning. For example to disable a CASEX warning
use the following:

      // verilator lint_off CASEX

      <troublesome code>

      // verilator lint_on CASEX
    

7.1.  A Note on Statistics
The data in this chapter has been obtained from a minimum of 6 runs on the author's
workstation. All data points and a statistical analysis can be found in the results directory.
A performance difference of less than 1kHz should not generally be considered statistically
significant.

7.2.  Verilator Warnings
This section addresses each of the Verilator warnings that occur with ORPSoC and show by
example how to deal with each of these. In each case the problem is fixed, rather than the
warning disabled. This allows the performance benefit of fixing each problem to be measured.

These are only a subset of all the warnings which Verilator may generate. However the approach
to handling these examples will serve for any other warnings encountered in other designs.

7.2.1.  The CASEX Warning

Rerun the Verilator build without warnings disabled. For now leave the -language flag
indicating IEEE 1364-2001.

make verilate COMMAND_FILE=cf-baseline-5.scr VFLAGS="-language 1364-2001"
 

156 warnings are given, as follows:

%Warning-CASEX: ../orp_soc/rtl/verilog/or1200/or1200_alu.v:207: Suggest casez (w
ith ?'s) in place of casex (with X's)
%Warning-CASEX: Use "/* verilator lint_off CASEX */" and lint_on around source t
o disable this message.
%Warning-CASEX: ../orp_soc/rtl/verilog/or1200/or1200_alu.v:278: Suggest casez (w
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ith ?'s) in place of casex (with X's)

...

%Warning-UNOPTFLAT:      Example path: ../orp_soc/rtl/verilog/or1200/or1200_sprs
.v:384:  ALWAYS
%Warning-UNOPTFLAT:      Example path: ../orp_soc/rtl/verilog/or1200/or1200_sprs
.v:202:  v.or1200_top.or1200_cpu->or1200_sprs.write_spr
%Error: Exiting due to 156 warning(s)
%Error: Command Failed /home/jeremy/tools/verilator/verilator-3.700/verilator_bi
n -language 1364-2001 -Mdir . -sc -f v-processed.scr
 

The first 19 of these are about CASEX. Verilator will warn if the design contains Verilog casex
statements. This is considered a risky coding system in synthesizable code, because of the
ease of matching a stray unknown signal. In 4-state logic, signals can be initialized to X, but
in the 2-state logic of Verilator only 0 and 1 are available.

There is less risk with casez. Only initialization to a high-impedance value causes a problem.
Thus, used with caution, casez is suitable for synthesizable code.

For more explanation see the SNUG 1999 papers by Clifford Cummings and Don Mills [2] [1].

There are two possible approaches to this problem. The first is to ignore it, either globally
by using the -Wno-CASEX flag, or individually by use of verilator lint_off CASEX and
verilator lint_on CASEX each case statement.

The second case is to replace each casex by casez. This is the approach we have taken here,
allowing us to measure the effect on performance. More commonly in existing RTL this warning
would just be ignored.

It is of course perfectly acceptable to mix both approaches—ignore some warnings and fix
others.

The files affected are mostly in the OpenRISC 1200 CPU ( or1200_alu.v,
or1200_lsu.v, or1200_operandmuxes.v, or1200_genpc.v, or1200_sprs.v, or1200_except.v,
or1200_reg2mem.v, or1200_du.v, or1200_mult_mac.v), along with one in the Ethernet
(eth_wishbone.v) and one in the UART (uart_transmitter.v). Modified versions are placed in
the local directory and the command file (cf-optimized-1.scr) altered to use them.

To get a performance figure, the revised model is run with all warnings disabled (the other
warnings have not yet been dealt with):

make verilate COMMAND_FILE=cf-optimized-1.scr \
VFLAGS="-Wno-lint -Wno-COMBDLY -Wno-UNOPTFLAT -language 1364-2001" \
NUM_RUNS=1000
 

The run gives the same result as before and takes the same number of cycles. Simulation
performance was 42.76 kHz, not significantly different to the previous run. The CASEX warning
is primarily about coding style rather than performance benefits.

7.2.2.  The VARHIDDEN Warning
Rerunning the Verilator build without warnings disabled on the new command file now yields
137 warnings:
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%Warning-VARHIDDEN: ../orp_soc/rtl/verilog/dbg_interface/dbg_crc8_d1.v:125: Decl
aration of signal hides declaration in upper scope: Data
%Warning-VARHIDDEN: Use "/* verilator lint_off VARHIDDEN */" and lint_on around 
source to disable this message.
%Warning-VARHIDDEN: ../orp_soc/rtl/verilog/dbg_interface/dbg_crc8_d1.v:111: ... 
Location of original declaration

...
 

Verilator warns if a variable or signal declaration has a name which is identical to one in a
surrounding block. There is only one instance of this here, in the CRC module of the debug
unit. The module declares a function, nextCRC8_D1, with an input parameter named Data at
line 125:

function [7:0] nextCRC8_D1;

  input Data;
  input [7:0] Crc;

  ...
 

This input parameter has the same name as that of one of inputs to this module declared
at line 111:

module dbg_crc8_d1 (Data, EnableCrc, Reset, SyncResetCrc, CrcOut, Clk);

parameter Tp = 1;

input Data;
input EnableCrc;

...
 

This is purely a matter of good design practice. A user reading the function code, could be
mistaken in thinking the variable Data referred to the original input signal. For completeness
a performance run is done with the revised command file, where the problem has been fixed
by renaming the function input parameter.

make verilate COMMAND_FILE=cf-optimized-2.scr \
     VFLAGS="-Wno-lint -Wno-COMBDLY -Wno-UNOPTFLAT -language 1364-2001" \
     NUM_RUNS=100
 

As expected, performance is not significantly changed, at 42.66 kHz.

7.2.3.  The IMPLICIT Warning
Rerunning the Verilator build without warnings disabled on the new command file now yields
135 warnings (the previous problem, VARHIDDEN counts as a pair of warnings, one for the
variable being hidden and one for the variable doing the hiding):



34 Copyright © 2009 Embecosm Limited

%Warning-IMPLICIT: ../orp_soc/rtl/verilog/dbg_interface/dbg_top.v:881: Signal de
finition not found, creating implicitly: RegAccess
%Warning-IMPLICIT: Use "/* verilator lint_off IMPLICIT */" and lint_on around so
urce to disable this message.
%Warning-IMPLICIT: ../orp_soc/rtl/verilog/dbg_interface/dbg_top.v:886: Signal de
finition not found, creating implicitly: RISCAccess

...
 

Verilog allows signals to be used if they have not been declared. This is generally considered
bad practice, and Verilator warns if it is found. There are five such occurrences in ORPSoC
two in dbg_top.v, two in uart_regs.v and one in ps2_top. These are corrected by inserting
their correct definition.

A performance run with the revised command file cf-optimized-3.scr gives no significant
change in performance at 42.50 kHz.

7.2.4.  The WIDTH Warning

Rerunning the Verilator build without warnings disabled on the new command file now yields
130 warnings:

%Warning-WIDTH: ../orp_soc/rtl/verilog/uart16550/uart_tfifo.v:186: Operator ADD 
expects 4 bits on the RHS, but RHS's CONST generates 1 bits.
%Warning-WIDTH: Use "/* verilator lint_off WIDTH */" and lint_on around source t
o disable this message.
%Warning-WIDTH: ../orp_soc/rtl/verilog/uart16550/uart_tfifo.v:203: Operator ASSI
GNDLY expects 4 bits on the Assign RHS, but Assign RHS's CONST generates 1 bits.

...
 

A total of 78 width warnings are given, affecting 23 Verilog RTL files in all components. These
are occasions where the width of signals being compared or assigned do not match.

Such mismatches are a potent source of confusion and bugs, since bits that are expected to
be set or cleared may be left untouched.

This is another warning that is about good design practice, rather than model performance,
and normal practice would be to ignore these errors after review.

However, for this example, all warnings are fixed, to allow a performance measurement to be
made. Some of the warnings are in files already changed for earlier warnings. In these cases
the files with the new changes add a numerical suffix: thus or1200_mult_mac-2.v.

A run with a command file containing corrected RTL (cf-optimized-4.scr) gives performance
of 43.04 kHz. Not a significant difference from the previous run, despite the extensive changes.

7.2.5.  The CASEINCOMPLETE Warning

Rerunning the Verilator build without warnings disabled on the new command file now yields
52 warnings:
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%Warning-CASEINCOMPLETE: ../orp_soc/rtl/verilog/ethernet/eth_shiftreg.v:124: Cas
e values incompletely covered (example pattern 0x0)
%Warning-CASEINCOMPLETE: Use "/* verilator lint_off CASEINCOMPLETE */" and lint_
on around source to disable this message.
%Warning-CASEINCOMPLETE: ../local/rtl/verilog/ethernet/eth_wishbone-2.v:618: Cas
e values incompletely covered (example pattern 0x1)

...
 

In this case Verilator is warning about a case statement with incomplete coverage of possible
values. This is a source of potential error. The missing cases should be made explicit.

There are three occurrences of this problem in ORPSoC. These are corrected in a new command
file (cf-optimized-5.scr). All the warnings covered by -Wno-lint have now been fixed, so a
performance run need only turn off the COMBDLY and UNOPTFLAT warnings:

make clean verilate COMMAND_FILE=cf-optimized-5.scr \
     VFLAGS="-Wno-COMBDLY -Wno-UNOPTFLAT -language 1364-2001" NUM_RUNS=1000
 

This gives a performance of 43.31 kHz, still not significantly different to any of the previous
performances.

7.2.6.  The COMBDLY Warning

Rerunning the Verilator build without warnings disabled on the new command file now yields
49 warnings:

%Warning-COMBDLY: ../local/rtl/verilog/dbg_interface/dbg_top-2.v:1162: Delayed a
ssignments (<=) in non-clocked (non flop or latch) blocks should be non-delay
ed assignments (=).
%Warning-COMBDLY: Use "/* verilator lint_off COMBDLY */" and lint_on around sour
ce to disable this message.
%Warning-COMBDLY: *** See the manual before disabling this,
%Warning-COMBDLY: else you may end up with different sim results.
%Warning-COMBDLY: ../orp_soc/rtl/verilog/ethernet/eth_registers.v:880: Delayed a
ssignments (<=) in non-clocked (non flop or latch) blocks should be non-delay
ed assignments (=).

...
 

This is one of the more complex warnings. Good design practice is to use non-blocking
assignments in sequential logic and blocking assignments in combinatorial logic. Cliff
Cummings 2000 SNUG paper gives a good explanation of why this is important [3].

This can cause errors when moving to cycle accurate simulation, but it is not necessarily
trivial to fix with existing code. However by following this guideline, the potential for Verilator
optimization is maximized.

The warning occurs 46 times in ORPSoC, but 41 of those are in a single file, ps2_keyboard.v,
in a combinatorial state machine.
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The command file cf-optimized-6.scr has all these problems fixed. A performance run need
not now turn off warnings about COMBDLY.

make clean verilate COMMAND_FILE=cf-optimized-6.scr \
     VFLAGS="-Wno-UNOPTFLAT -language 1364-2001" NUM_RUNS=1000
 

This run gives a performance of 43.20 kHz, once again not significantly different to earlier
figures.

7.2.7.  The UNOPTFLAT Warning

Rerunning the Verilator build without warnings disabled on the new command file now yields
just 3 warnings, albeit with quite complex warning messages.

%Warning-UNOPTFLAT: ../local/rtl/verilog/ps2/ps2_top.v:154: Signal unoptimizable
: Feedback to clock or circular logic: v->ps2_top.rx_kbd_data_ready
%Warning-UNOPTFLAT: Use "/* verilator lint_off UNOPTFLAT */" and lint_on around 
source to disable this message.
%Warning-UNOPTFLAT:      Example path: ../local/rtl/verilog/ps2/ps2_top.v:154:  
v->ps2_top.rx_kbd_data_ready
%Warning-UNOPTFLAT:      Example path: ../local/rtl/verilog/ps2/ps2_translation_
table.v:310:  ASSIGNW
%Warning-UNOPTFLAT:      Example path: ../local/rtl/verilog/ps2/ps2_top.v:155:  
v->ps2_top.rx_translated_data_ready
%Warning-UNOPTFLAT:      Example path: ../local/rtl/verilog/ps2/ps2_wb_if-2.v:68
4:  ASSIGNW
%Warning-UNOPTFLAT:      Example path: ../local/rtl/verilog/ps2/ps2_top.v:156:  
v->ps2_top.rx_kbd_read_wb
%Warning-UNOPTFLAT:      Example path: ../local/rtl/verilog/ps2/ps2_keyboard-2.v
:429:  ALWAYS
%Warning-UNOPTFLAT:      Example path: ../local/rtl/verilog/ps2/ps2_top.v:154:  
v->ps2_top.rx_kbd_data_ready
%Warning-UNOPTFLAT: ../local/rtl/verilog/or1200/or1200_sprs.v:212: Signal unopti
mizable: Feedback to clock or circular logic: v.or1200_top.or1200_cpu->or1200_sp
rs.read_spr

...
 

This is an important warning to address. It is identifying a set of signals which appear to have
cyclic dependency—a combinatorial loop. Rather than evaluating the expression in a single
step, Verilator will need to iterate until it settles.

Verilator identifies the problem signal, and at least one loop through which it is being driven.
In the first warning in the example, the problem signal is rx_kbd_data_ready at line 154 of
ps2_top.v:

wire rx_released,
     rx_kbd_data_ready,
     rx_translated_data_ready,
...
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The next line of the warning identifies that rx_kbd_data_ready is driving
rx_translated_data_read_o at line 310 of ps2_translation_table.v:

assign code_o = translate_i ? {(rx_released_i | ram_out[7]), ram_out[6:0]} : cod
e_i ;
assign rx_translated_data_ready_o = translate_i ? rx_translated_data_ready : rx_
data_ready_i ;
assign rx_read_o = rx_read_i ;
 

The connection is not immediately obvious. rx_translated_data_ready_o is not directly
dependent on rx_kbd_data_ready. However this is a different module, and Verilator has
flattened the code. The signal rx_data_ready_i is an input. In the instantiation of
ps2_translation_table in ps2_top.v, the driving signal, rx_kbd_data_ready is the argument
used for the rx_data_ready_i input:

ps2_translation_table i_ps2_translation_table
(
    ...

    .data_o                     (),
    .rx_data_ready_i            (rx_kbd_data_ready),
    .rx_translated_data_ready_o (rx_translated_data_ready),

    ...
) ;
 

The next line of warning identifies that rx_translated_data_ready_o is driving
rx_translated_data_ready at line 155 of ps2_top.v:

wire rx_released,
     rx_kbd_data_ready,
     rx_translated_data_ready,
     rx_kbd_read_wb,
     rx_kbd_read_tt,
 

Again the connection is not immediately clear, but the driving signal
(rx_translated_data_ready_o) is an output of module ps2_translation_table. This is
connected to rx_translated_data_ready_o via its instantiation in ps2_top.v:

ps2_translation_table i_ps2_translation_table
(
    ...

    .rx_data_ready_i            (rx_kbd_data_ready),
    .rx_translated_data_ready_o (rx_translated_data_ready),
    .rx_read_i                  (rx_kbd_read_wb),
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    ...
) ;
 

The next line of warning identifies that rx_translated_data_ready is driving rx_kbd_read_o
at line 684 of ps2_wb_if-2.v (the previously modified version of ps2_wb_if.v):

assign rx_kbd_read_o = rx_kbd_data_ready_i &&
                       ( enable1
                         ||
                         ( read_input_buffer_reg
                           &&
                           input_buffer_full
                           &&
                           !input_buffer_filled_from_command
                           `ifdef PS2_AUX
                           &&
                           !aux_input_buffer_full
                           `endif
                          )
                        );
 

Once again this is a different module, and the connection is through an input to the
module. In this case rx_translated_data_ready is passed as input rx_kbd_data_ready_i in
the instantiation of ps2_wb_if in ps2_top.v:

ps2_wb_if i_ps2_wb_if
(
    .wb_clk_i                      (wb_clk_i),
    .wb_rst_i                      (wb_rst_i),

    ...

    .rx_scancode_i                 (rx_translated_scan_code),
    .rx_kbd_data_ready_i           (rx_translated_data_ready),
    .rx_kbd_read_o                 (rx_kbd_read_wb),

    ...

) ;
 

The next line of warning identifies that rx_kbd_read_o is driving rx_kbd_read_wb at line 156
of ps2_top.v:

wire rx_released,
     rx_kbd_data_ready,
     rx_translated_data_ready,
     rx_kbd_read_wb,
     rx_kbd_read_tt,
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     tx_kbd_write,
     ...
 

Once again this is a different module, and the connection is through an output of the module.
In this case rx_kbd_read_o is passed as output in the instantiation of ps2_wb_if in ps2_top.v,
where it is connected to rx_kbd_read_wb:

ps2_wb_if i_ps2_wb_if
(
    ...

    .rx_kbd_data_ready_i           (rx_translated_data_ready),
    .rx_kbd_read_o                 (rx_kbd_read_wb),
    .tx_kbd_data_o                 (tx_kbd_data),

    ...
) ;
 

The next line of warning identifies that rx_kbd_read_wb in turn drives rx_read at line 429 of
ps2_keyboard-2.v (an already modified version of ps2_keyboard.v):

always @(m2_state or rx_output_strobe or rx_read)
begin : m2_state_logic
  case (m2_state)

    ...
 

The trail through the flattened modules is a little harder this time. The driving signal,
rx_kbd_read_wb is an input (rx_read_i) to module ps2_translation_table. Within that module
it directly drives (via a continuous assignment), the output rx_read_o, which is connected to
rx_kbd_read_tt in ps2_top.v:

ps2_translation_table i_ps2_translation_table
(
    ...

    .rx_translated_data_ready_o (rx_translated_data_ready),
    .rx_read_i                  (rx_kbd_read_wb),
    .rx_read_o                  (rx_kbd_read_tt),
    .rx_released_i              (rx_released)
) ;
 

rx_kbd_read_tt is in turn the rx_read input in the instantiation of ps2_keyboard:

ps2_keyboard #(`PS2_TIMER_60USEC_VALUE_PP, `PS2_TIMER_60USEC_BITS_PP, `PS2_TIMER
_5USEC_VALUE_PP, `PS2_TIMER_5USEC_BITS_PP)
i_ps2_keyboard
(



40 Copyright © 2009 Embecosm Limited

    ...

    .rx_data_ready               (rx_kbd_data_ready),
    .rx_read                     (rx_kbd_read_tt),
    .tx_data                     (tx_kbd_data),

    ...
);
 

The final line of warning, identifies that rx_read is in turn a driver of the original signal,
rx_kbd_data_ready at line 154 of ps2_top.v, thus completing the loop.

The connection is through the rx_data_ready output of ps2_keyboard instantiated in
ps2_top.v:

ps2_keyboard #(`PS2_TIMER_60USEC_VALUE_PP, `PS2_TIMER_60USEC_BITS_PP, `PS2_TIMER
_5USEC_VALUE_PP, `PS2_TIMER_5USEC_BITS_PP)
i_ps2_keyboard
(
    ...

    .rx_scan_code                (rx_scan_code),
    .rx_data_ready               (rx_kbd_data_ready),
    .rx_read                     (rx_kbd_read_tt),

    ...
);
 

The rx_data_ready output is driven from within the always block dependent on rx_read:

always @(m2_state or rx_output_strobe or rx_read)
begin : m2_state_logic
  case (m2_state)
    m2_rx_data_ready_ack:
          begin
            rx_data_ready = #1 1'b0;
            if (rx_output_strobe) m2_next_state = #1 m2_rx_data_ready;
            else m2_next_state = #1 m2_rx_data_ready_ack;
          end
    m2_rx_data_ready:
          begin
            rx_data_ready = #1 1'b1;
            if (rx_read) m2_next_state = #1 m2_rx_data_ready_ack;
            else m2_next_state = #1 m2_rx_data_ready;
          end
    default : m2_next_state = #1 m2_rx_data_ready_ack;
  endcase
end
 

The loop is summarized in Figure 7.1.
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rx_kbd_data_ready

rx_translated_data_read_o

rx_kbd_read_o

rx_kbd_read_wb

rx_translated_data_ready

rx_read

via input rx_data_ready_i
of ps2_translation_table

via input rx_kbd_data_ready_i
of ps2_wb_if

output of ps2_translation_table

output of ps2_wb_if

through rx_read_i and rx_read_o
of ps2_translation_table via
input rx_read of ps2_keyboard

via output rx_data_ready
of ps2_keyboard

Figure 7.1.  Example of a combinatorial loop in ORPSoC

Breaking Combinatorial Loops
Combinatorial loops can be down to a number of causes. In many cases there is no loop at
the bit level. The dependencies are on different bits in a multi-bit signal, none of which form
a loop. Verilator looks for loops on the full register or wire, not the individual bits, so flags a
warning. The solution in this case is easy - break the signal apart to its individual components.

But this is not the problem with this ORPSoC example. This is a single bit signal, and a genuine
combinatorial loop (which will settle, so simulates correctly). The clue to fixing it is in the
combinatorial always block in ps2_keyboard-2.v:

always @(m2_state or rx_output_strobe or rx_read)
begin : m2_state_logic
  case (m2_state)
    m2_rx_data_ready_ack:
          begin
            rx_data_ready = #1 1'b0;
            if (rx_output_strobe) m2_next_state = #1 m2_rx_data_ready;
            else m2_next_state = #1 m2_rx_data_ready_ack;
          end
    m2_rx_data_ready:
          begin
            rx_data_ready = #1 1'b1;
            if (rx_read) m2_next_state = #1 m2_rx_data_ready_ack;
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            else m2_next_state = #1 m2_rx_data_ready;
          end
    default : m2_next_state = #1 m2_rx_data_ready_ack;
  endcase
end
   

There is no reason in a cycle accurate simulation (where # delays are ignored) for
rx_data_ready to be set inside the always block. Ignoring the delay, it is low when m2_state
== m2_rs_data_ready_ack and high otherwise. The default entry is meaningless in a 2-state
simulation, since m2_state is a 1-bit register.

The always block can be written with rx_data_ready assigned outside the block, and the loop
is broken:

`ifdef verilator
assign rx_data_ready = ~(m2_state == m2_rx_data_ready_ack); // Breaks comb loop
`endif
   
always @(m2_state or rx_output_strobe or rx_read)
begin : m2_state_logic
  case (m2_state)
    m2_rx_data_ready_ack:
          begin
`ifndef verilator
            rx_data_ready = #1 1'b0;
`endif
            if (rx_output_strobe) m2_next_state = #1 m2_rx_data_ready;
            else m2_next_state = #1 m2_rx_data_ready_ack;
          end
    m2_rx_data_ready:
          begin
`ifndef verilator
            rx_data_ready = #1 1'b1;
`endif
            if (rx_read) m2_next_state = #1 m2_rx_data_ready_ack;
            else m2_next_state = #1 m2_rx_data_ready;
          end
    default : m2_next_state = #1 m2_rx_data_ready_ack;
  endcase
end
   

Performance Impact of Fixing UNOPTFLAT
The remaining two loops both concern signals in or1200_sprs.v. The command file cf-
optimized-7.scr has all these problems fixed. A performance run need not now turn off any
warnings.

make clean verilate COMMAND_FILE=cf-optimized-7.scr \
     VFLAGS="-language 1364-2001" NUM_RUNS=1000
   

This run gives a significant performance improvement over previous runs of 47.06 kHz.



43 Copyright © 2009 Embecosm Limited

This is one of two warnings that is really important to fix. The other is UNOPT which occurs
when modules have input and output signals crossing between them, and which does not
occur in ORPSoC.

Even though there were only 3 loops, one of which was in a peripheral with tied-off inputs,
fixing this problem gave an 8% performance improvement.

7.2.8.  Fixing Language Conflicts
The final fix is to remove the constructs which conflict with SystemVerilog. This gives greatest
flexibility in future development. These are errors, so will stop the compilation at the first error.
The model build is run without restricting the language:

make verilate COMMAND_FILE=cf-optimized-7.scr
 

The first error is in eth_wishbone-3.v:

%Error: ../local/rtl/verilog/ethernet/eth_wishbone-3.v:579: syntax error, unexpe
cted do, expecting IDENTIFIER
%Error: Cannot continue
%Error: Command Failed /home/jeremy/tools/verilator/verilator-3.700/verilator_bi
n -Mdir . -sc -f v-processed.scr
 

This is the commonest trap set by SystemVerilog's new keywords. do is often used in designs
to designate the data output. The problem is fixed by simple substitution.

In this case the problem is the instantiation of eth_spram_256x32.v in eth_wishbone-3.v,
which uses do for its data output port. The solution is to replace do with data_o. For
consistency, di is changed to data_i at the same time.

This is the only such conflict in the ORPSoC source. A performance run with the update
command file (cf-optimized-8.scr) yields no significant change in performance at 47.5 kHz
excluding Verilator model build time.

7.2.9.  Summary of Performance Gains from Verilator Warnings
Table 7.1 shows the performance gains which can be achieved by fixing the various Verilator
warnings and language inconsistencies.

Run Description Build Time Run Time Performance
Baseline 13.94 s 27.67 s 42.66 kHz

CASEX fixed 13.91 s 27.59 s 42.76 kHz

VARHIDDEN fixed 13.91 s 27.66 s 42.66 kHz

IMPLICIT fixed 13.89 s 27.77 s 42.50 kHz

WIDTH fixed 13.92 s 27.41 s 43.04 kHz

CASEINCOMPLETE fixed 13.93 s 27.24 s 43.31 kHz

COMBDLY fixed 13.92 s 27.32 s 43.20 kHz

UNOPTFLAT fixed 13.95 s 25.07 s 47.06 kHz

SystemVerilog compliant 13.91 s 24.85 s 47.49 kHz

Table 7.1.  Comparison of model performance when fixing Verilator warnings.
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The table confirms that the majority of warnings do not greatly affect performance. They
are primarily about writing good quality RTL. However fixing UNOPTFLAT gave a significant
performance improvement.

7.3.  C++ Compiler Optimizations
All the optimizations up to this stage have concerned getting the best possible model out of
Verilator. There are now the optimizations to get from the C++ compiler.

All the performance figures in this section make use of the final command file, cf-
optimized-8.scr.

7.3.1.  Use of OPT_FAST, OPT_SLOW and OPT
Verilator divides its code into two categories. That which is executed every cycle ("fast" code)
and that which is executed less frequently ("slow" code). The OPT_FAST macro of the Verilator
generated Makefile specifies optimizations to be applied to the "fast" code. Conversely the
OPT_SLOW macro specifies optimizations to be applied to the "slow" code. For convenience the
macro OPT can be used to specify optimizations that will be applied to both categories of code.

The separation allows focusing of optimization effort for large designs, where compile times
are significant. Just specifying OPT_FAST gains most of the model performance benefit, without
the overhead of optimizing the "slow" code.

Table 7.2 shows the effect of using the GNU C++ compiler's highest level of optimization (-
O3) with OPT_FAST, OPT_SLOW and OPT. These can be passed as macros to the Makefile in the
example for this application note:

make verilate COMMAND_FILE=cf-optimized-8.scr NUM_RUNS=1000 OPT_FAST="-O3"
 

Run Description Build Time Run Time Performance
No optimization 13.91 s 24.85 s 47.49 kHz

OPT_FAST=-O3 33.78 s 12.35 s 95.51 kHz

OPT_SLOW=-O3 14.20 s 25.35 s 46.58 kHz

OPT=-O3 35.35 s 12.39 s 95.25 kHz

Table 7.2.  Comparison of model performance with different Verilator OPT flag settings.
In the example used in this application note (which is not huge), none of the model build times
are unreasonable. As can be seen OPT_SLOW profiling has no significant effect in this example.

7.3.2.  Choice of optimization level
The GNU C++ compiler (like other Linux C++ compilers) offers various levels of optimization
from none (-O0) through to (-O3). There is a trade off to be made—more optimization means
longer compile times, but faster run times.

GNU C++ also offers -Os, to optimize for space. This is equivalent to -O2, but omitting any
optimizations that tend to increase the size of the program.

Table 7.3 shows the impact of the different optimization levels on the example design.

Run Description Build Time Run Time Performance
-O0 13.98 s 25.05 s 47.10 kHz

-O1 21.51 s 13.13 s 89.90 kHz

-O2 32.77 s 12.76 s 92.46 kHz
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Run Description Build Time Run Time Performance
-O3 35.35 s 12.39 s 95.25 kHz

-Os 26.23 s 12.24 s 96.41 kHz

Table  7.3.   Comparison of model performance with different compiler optimization
settings.

Almost all the benefit is gained from -O1, but there are incremental benefits, at the expense
of greater compile times for higher levels of optimization.

Note however that the highest performance is with -Os. Code generated by Verilator (and its
commercial rivals) has a classic "cache-busting" structure. On each code cycle execution starts
at the top and proceeds linearly to the bottom. Anything that reduces the code size, increases
the likelihood of code remaining in the cache, and so can have a very large performance benefit.

The recommendation is to use -Os as the preferred C++ compiler option.

7.3.3.  Compiler Profiling
Modern compilers, such as the GNU C++ compiler can optimize based on statistics from earlier
runs of the compiled program. The program is compiled with options to gather statistics, run
to create the statistics, then recompiled using the data from those statistics.

The latest versions of the GNU C++ compiler can use this for:

• Reorganize branches to favor the most commonly taken branch (option -fbranch-
probabilities).

• Optimize expressions based on knowledge of how they are used (option -fvpt).

• Unroll loops where this would be favorable in most cases (option -funroll-loops).

• Peel loops (i.e completely unroll and remove them), where they would always be done a
fixed number of times (option -fpeel-loops).

• Perform tail duplication where the resulting enlarged superblock would improve other
transformations (option -ftracer).

Some care is needed in using branch-profiling. It can interact badly with other systems (for
example ccache). Although it has been part of the GNU C++ Compiler for some years, it must
still be regarded as somewhat experimental in nature.

Profiling is enabled with the example Makefile by using the verilator-fast target. Statistics
are gathered by compiling the model with -ftest-coverage and -fprofile-generate options
and then running it. The options to be used in the subsequent optimizing recompile are passed
as a macro, PROF_OPTS, for example:

make verilate-fast COMMAND_FILE=cf-optimized-8.scr NUM_RUNS=1000 \
     OPT="-O3" PROF_OPTS="-fbranch-probabilities"
 

Table 7.4 shows the impact of the different profiling options on the example design when
compiled with the -Os option, the fastest option without profiling. The options are applied
incrementally, in the order -fbranch-probabilities, -fvpt, -funroll-loops, -fpeel-loops
and -ftracer.

Run Description Build Time Run Time Performance
No profile optimization 26.23 s 12.24 s 96.41 kHz

Add -fbranch-probabilities 72.44 s 11.94 s 98.79 kHz
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Run Description Build Time Run Time Performance
Add -fvpt 73.88 s 11.93 s 98.93 kHz

Add -funroll-loops 72.63 s 12.00 s 98.30 kHz

Add -fpeel-loops 72.65 s 12.02 s 98.17 kHz

Add -ftracer 72.65 s 11.99 s 98.42 kHz

Table 7.4.  Comparison of model performance using -Os and profiling.
Model build times are all substantially bigger because of the need to do a statistics gathering
build and run. The results improve slightly for the first two optimizations (-fbranch-
probabilities and -fvpt), but then fall off. This is not surprising. The benefit of -Os is
compactness of code size. However -funroll-loops, -fpeel-loops and -ftracer all tend to
increase code size—reducing the caching benefit with using -Os.

The added effort of profile directed compilation cannot be justified when using -Os.

The same exercise is repeated, but this time to see the effect on a compile using option -O3.
The results are in Table 7.5.

Run Description Build Time Run Time Performance
No profile optimization 35.35 s 12.39 s 95.25 kHz

Add -fbranch-probabilities 83.51 s 9.36 s 126.10 kHz

Add -fvpt 83.28 s 9.34 s 126.39 kHz

Add -funroll-loops 83.78 s 9.34 s 126.39 kHz

Add -fpeel-loops 84.61 s 9.27 s 127.32 kHz

Add -ftracer 85.87 s 9.13 s 129.28 kHz

Table 7.5.  Comparison of model performance using -O3 and profiling.
The results are dramatic. The -fbranch-probabilities optimization gives the majority of the
benefit, but cumulatively the other four options further increase performance. The results are
significantly better than using -Os.

The guideline advice is to use -O3 rather than -Os if you have the opportunity to profile your
design.

7.4.  Profiling the Completed Model
The final stage is to look at the finished model for any modules which are dominating the
compute time. These are candidates for replacement with equivalent modules optimized for
cycle accurate modeling.
Common causes of performance bottlenecks are:
• Built-in Self Test (BIST) code. Such code can be pervasive and bit-oriented, making it

hard to model efficiently in a word-oriented environment like C++. BIST is not usually
relevant to cycle accurate modeling. Substituting an equivalent model without BIST code
can make a substantial performance improvement.

• Behavioral memory models. Many memory models supplied by third parties are designed
for behavioral accuracy during hardware verification. They will offer detailed and
accurate intra-cycle performance modeling. Ports may well be buffered at the individual
bit level.
Because memories are often so central to a design this can be a serious performance
bottleneck. The solution is to replace them by a simple Verilog model which is concerned
only with cycle accuracy and omits any buffering.
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• Associative (content-addressable) memories. These are efficient to implement in
hardware, but a nightmare in software. In this case substitution in C/C++ using a hash-
table is usually the best approach.

• Bit-oriented code. Hardware handles bits as efficiently as words, but the same is not
true of word-oriented C/C++. Such code can occur in many scenarios, but a common
one is legacy designs for operations such as multiplication. Early synthesis tools did not
make a good job of such operations, and so designs would be written out explicitly to
make the functionality explicit.
Such designs can be huge, but are easily replaced by a single line of Verilog using the
high level operation.

Verilator provides the -profile-cfuncs flag, which adds additional information to the compiled
code, identifying the module to which it belongs. Compiling the model using the GNU C++
compiler's -g and -pg flags will instrument the compiled code for profiling. A subsequent run
will generate a gmon.out file, which can be analyzed using the standard gprof command.

Verilator provides a utility, verilator_profcfunc, for post-processing the results of the gprof.
This breaks out the processing time by Verilog module name, rather than the underlying C
++ function.
When profiling, no optimization should be used. Although the GNU C++ compiler allows
optimized profiling, it can be a source of confusion, when parts of the code are optimized away.
Unoptimized models are just as effective in highlighting any performance bottlenecks. With
the example design, the following sequence of commands is appropriate:

make verilate COMMAND_FILE=cf-optimized-8.scr \
     VFLAGS="-profile-cfuncs" NUM_RUNS=1000 OPT="-g -pg"
gprof Vorpsoc_fpga_top > gprof.out
verilator_profcfunc gprof.out vprof.out
      

The first part of the output file, vprof.out identifies where the execution time went:

Overall summary by type:
  % time  type
    4.62  C++
   17.45  Common code under Vorpsoc_fpga_top
   72.74  Verilog Blocks under Vorpsoc_fpga_top
    5.19  Unaccounted for/rounding error
      

The C++ code is code outside the Verilator model. In the example used here, that is the SystemC
test bench. The common code under Vorpsoc_fpga_top is the common infrastructure code.
The Verilog blocks are the C++ code of directly derived from the Verilog. Finally, there is time
that was spent outside profiled code. In this example, that will be largely due to the SystemC
kernel, but since gprof is based on statistical sampling it also includes a small amount of time
which cannot be accounted for.
There is nothing significant in this example A warning sign to watch for is if the either the C
++ or unaccounted figure is very high. That could be a problem with a SystemC test bench
—perhaps with very wide ports.
The next section is a summary of the same information, grouping the common code and Verilog
blocks:

Overall summary by design:
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  % time  design
    4.62  C++
   90.19  Vorpsoc_fpga_top
    5.19  Unaccounted for/rounding error
      

In both these cases, instantiation of multiple models would make for more entries.

The third section is the most important. It shows how the execution time was broken down
by originating Verilog module:

Overall summary by module:
  % time  module
    4.62  C++
   17.45  Vorpsoc_fpga_top common code
    0.11  dbg_crc8_d1
    0.00  dbg_register
    0.17  dbg_registers
    0.76  dbg_sync_clk1_clk2
    ...
      

This is provided in alphabetical order, but it is useful to cut out this section and sort it (using
the command sort -n -r):

   17.45  Vorpsoc_fpga_top common code
    7.69  eth_wishbone_4
    5.17  or1200_du
    5.05  uart_regs_2
    4.62  C++
    3.77  tc_top
    3.41  eth_registers
    3.38  eth_crc
    3.07  dbg_top_3
      

The common code can be ignored—that is beyond control. Look for any small modules that
are using a lot of processing.

Note
The names used are that of the originating file, not the module name, with any
hyphen ("-") mapped to underscore ("_"). Thus the first example here is the module
eth_wishbone, but in the file eth_wishbone-4.v

There are no real bit CPU hogs in this example. The largest user, eth_wishbone-4.v uses over
7% of the execution time, but it is a large block (more than 2,500 lines of Verilog), so this is
not unreasonable. The other modules at the top of the list are also all big blocks of code.

It is worth observing that in the current model, the Ethernet is tied off and unused. If there
is no intention to develop the model to use the Ethernet the instantiation could be removed
altogether, perhaps improving performance by 20% or so. The same observation applies to a
lesser extent with the other peripherals, currently unused.

7.5.  Summary of Performance Gains Through Optimization
The examples in this chapter can be distilled to some simple guidelines for obtaining the fastest
possible models
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1. Build new code so it does not generate Verilator warnings.

2. Most warnings can be ignored in known good legacy code. However UNOPTFLAT (and
UNOPT, which was not encountered here) should be addressed, since they will lead to
performance gains.

3. Use -O1 or -Os for simple C++ optimization, or where build time is onerous. For maximum
speed using -O3 with profiling.

4. Profile the generated model using gprof to identify any performance bottlenecks in the
Verilog.

There is a trade off between increased time taken to create the model and reduced execution
times of the resulting model. Key data points from the various optimization steps are
summarized in Table 7.6.

Run Description Build Time Run Time Performance
Baseline event driven simulation 1.78 s 796.84 s 1.48 kHz

Optimized event driven simulation 1.78 s 803.39 s 1.47 kHz

Baseline Verilator model 13.94 s 27.67 s 42.66 kHz

Verilator with all language fixes 13.91 s 24.85 s 47.49 kHz

Verilator g++ -Os 26.23 s 12.24 s 96.41 kHz

Verilator g++ -O3 and profiling 85.87 s 9.13 s 129.28 kHz

Table 7.6.  Summary of ORPSoC model performance with various optimizations.

These results are shown graphically in Figure 7.2.

Figure 7.2.  Summary of model build and run times for ORPSoC
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Chapter 8.  Summary
This application note has shown how to build and optimize a cycle accurate model of a complete
SoC in SystemC using Verilator. The steps can be summarized as:
1. Establish a baseline model using event driven simulation, against which subsequent

Verilator models can be compared.
2. Build a baseline Verilator model starting from the same source hierarchy. Make RTL

modifications where necessary to meet Verilator's language requirements, and disable
warnings at this stage.

3. Show that any RTL changes still work correctly under event driven simulation.
4. Rerun Verilator with warnings enabled. In general fix all warnings in new code, but only

fix UNOPTFLAT and UNOPT in working legacy code.
5. Show that any RTL changes still work correctly under event driven simulation.
6. Optimize the C++ compilation. Start using either -O1 or -Os with the GNU C++ compiler.
7. If time permits use profile directed compilation of the C++ and -O3.
8. Profile the finished model using gprof and Verilator's post-analysis utility. Consider

disabling or optimizing any modules that are a serious performance bottleneck.
The starting point in this example was an event driven simulation of the SoC running at
1.4kHz. An initial Verilator model required a small number of changes to the RTL and achieved
over 40kHz.
However, after following the steps in this tutorial, the final optimized model was capable of
running at nearly 130kHz. These results are shown graphically in Figure 8.1.

Figure 8.1.  Summary of model performance for ORPSoC
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The result is a cycle accurate SystemC model of a complete SoC, with a performance which
makes low-level firmware development a quite feasible activity.

Suggestions for corrections or improvements are welcomed. Please contact the author at
jeremy.bennett@embecosm.com.

mailto:jeremy.bennett@embecosm.com
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Glossary

2-state
Hardware logic model which is based only on logic high and logic low (binary 0 and binary
1) values.
See also: 4-state.

4-state
Hardware logic model which considers unknown (X) and unproven (Z) values as well as
logic high and logic low (binary 0 and binary 1).
See also: 2-state.

big endian
A description of the relationship between byte and word addressing on a computer
architecture. In a big endian architecture, the least significant byte in a data word resides
at the highest byte address (of the bytes in the word) in memory.
The alternative is little endian addressing.

See also: little endian.

elaboration
In an event driven simulator, the analysis of source Verilog to create an executable which
will subsequently perform the simulation.

Joint Test Action Group (JTAG)
JTAG is the usual name used for the IEEE 1149.1 standard entitled Standard Test Access
Port and Boundary-Scan Architecture for test access ports used for testing printed circuit
boards and chips using boundary scan.
This standard allows external reading of state within the board or chip. It is thus a natural
mechanism for debuggers to connect to embedded systems.

linting
A linting compiler (or feature of a compiler) provides extra analysis of the source language to
identify potentially dangerous constructs. The problems identified by such tools typically
go beyond what the source language standard requires, to identify good practice in the
use of the source language.

little endian
A description of the relationship between byte and word addressing on a computer
architecture. In a little endian architecture, the least significant byte in a data word resides
at the lowest byte address (of the bytes in the word) in memory.
The alternative is big endian addressing.

See also: big endian.

Open SystemC Initiative (OSCI)
The industry standardization body for SystemC
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System on Chip (SoC)
A silicon chip which includes one or more processor cores.

SystemC
A set of libraries and macros, which extend the C++ programming language to facilitate
modeling of hardware.
Standardized by the Open SystemC Initiative, who provide an open source reference
implementation.

See also: Open SystemC Initiative.
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