
Open Source in Embedded System Development
Jeremy Bennett, Embecosm

Presented at the Embedded Masterclass, Cambridge 5th October 2011.

Abstract

This paper introduces the huge range of free and open source software available
to the embedded software developer. Hardware modeling, software tool chains,
operating systems (RTOS and Linux), middleware and applications are all
covered. Today open source is spreading to the hardware world.

The paper addresses the advantages and risks associated with using free and
open source software, including the issues of quality, support and licensing.

History

First a little history. Where did the open source philosophy originate? One answer is the MIT
Model Railroad Society in the 1950s. It might be folklore, but when the University acquired
its first computer, members of the society would sneak in at night to play with the
equipment. Their exploits or “hacks” (a student term for a prank) were shared openly, with
members competing to show what they could achieve.

This culture of innovative “hacking”, and the associated openness spread across campuses
as Universities acquired computers in the 1960s, 70s and 80s. Some of that early free
software is still widely used. MIT's X window system and Donald Knuth's TeX being
examples.

What is “open source software”

A key step was the GNU Manifesto published by Richard Stallman in 1983, as a protest
against the growing commercialization and proprietary nature of software, which he believed
was destroying innovation. The name identifies his primary culprit. What's GNU: GNU's Not
Unix.

Originally such software was referred to as “free” software, but in English “free” has two
meanings. It can mean “not paid for” as in “Jeremy would you like a free beer?” Or it can
mean “freedom”.

However software that is “free as in beer” does not necessarily make you “free as in
freedom”. I can give you my proprietary software free of charge until you have your entire
corporation adopting it. I can then decide to charge you for the next version―you are being
held to ransom. If you don't pay up, you have to start again with your entire organization.

We are interested in “freedom”. With software this can be achieved by giving the user the
source code to a program, so they can independently develop it. No longer can they be held
to ransom. To make this distinction clear, the term “open source “ was introduced in 1998
by Eric S Raymond and others, along with the Open Source Initiative, which aimed to define
what was meant by open source software.

The Open Software Initiative came up with a set of criteria, know as the Open Source
Definition which any software project must meet. There are 10 criteria in all, but they can
be summarized into just three principles.

 1. The principle of free distribution. There must be no restriction on any party giving
away the software freely, either standalone or as part of another program.

 2. The right of access to the source code, and this is important because it allows anyone
to make what are known as “derivative works”. These may be bug patches, or they

1

may be completely new programs, but they are central to the true value of open source
software.

 3. Finally there is the principle of non-discrimination. By this is meant discrimination
against who may use the software, discrimination against the technology on which
this software may run, discrimination against what the software can be used for, and
discrimination over whether you can use the software commercially.

Today many people refer to “free and open source software” or FOSS to make it absolutely
clear what they mean. By contrast “freeware” refers to software that you don't pay for, but
for which source code is not available.

Why does anyone develop open source commercially?

It is important to understand that it has always been perfectly acceptable to make money
out of open source software. However it should also be immediately clear that if the source
code is freely available, then simply selling the software is not going to work.

Yet most open source software today is developed by well paid commercial developers. While
hobbyists and academic “hackers” are still important, they are only a minor part of what
takes place.

And you can make a lot of money. MySQL, the open source database company was sold for
a billion dollars. Red Hat, the Linux and services provider is a multi-billion dollar company.
IBM, the world's largest holder of patents makes more money from open source than it does
from its patents.

The reason is that this free software underpins other very valuable commercial products.
Websites like Google and Facebook depend on open source infrastructure. Chip providers
like ARM and Intel depend on robust tool chains for their processors. All these companies
have a vested interested in contributing effort for the common good.

Other companies like IBM, Red Hat and my own company, Embecosm, make their money
through services. You have the source and you can of course maintain and develop the
software yourself. But invariably it is cheaper and quicker to ask an expert to do it for you.

The bottom line is that today, open source software is often very robust and commercially
supported. The main advantage is that, unlike proprietary software, it is lower risk. You
cannot be held to ransom by your supplier.

The Legal Situation

Open source software is not (usually) “public domain”. It is protected by copyright.
Copyright law has the merit of being largely the same around the world. It is usually free,
and in most countries automatically granted to an author. Most importantly the courts have
for many years held that software is a creative act covered by copyright law. Open source
software works by granting the user a license to the copyrighted software, in exchange for
which the user must follow the rules of open source software.

There are a wide range of open source licenses in use, and one of the downsides of using
open source software is the need to understand the differences. We can categorize the
various open source licenses in two ways.

• First whether the license is permissive or non-permissive. Permissive licenses like the
MIT and BSD licenses grant you access to the source code, but make few demands on
what you then do with the code. By contrast, non-permissive licenses like the GNU
license require that if you pass the software on, you must also pass on the source
code, including any changes you have made and all the license obligations.

• Secondly whether the license is viral or non-viral. If you include open source code with
a viral license in your own code, then the entire body of code becomes covered by that
viral license. By contrast non-viral licenses only cover the open source code yourself.

2

If you are just using open source software as an application, then the details of the license
are not hugely important.

However if you are going to incorporate software into your own developments, then you
must take care. In particular including a library with a viral license could make the entirety
of your code open source. That is fine if you wish to be open source, but otherwise is a
problem. Even if you wish to open source your own software, you may also be linking in a
proprietary library, which would then have to be made open.

Many users are initially attracted to non-viral, permissive licenses. They allow the user to
take maximum advantage without the need to contribute back. The downside is that the
communities associated with such licenses can be much weaker. There is little incentive to
contribute to a project where the users give nothing back.

So the most widely used open source license is in fact the GNU General Public License (GPL)
which is both viral and non-permissive. It is very demanding on users, but conversely
generates very strong developer communities. The success of Linux shows that GPL need
not be a barrier to adoption.

In the embedded community there is widespread use of non-viral licenses such as the GNU
Lesser General Public License (LGPL) or the permissive BSD and MIT licenses.

The bottom line is that open software offers advantages, but you must follow two key
engineering principles.

 1. Understand the licenses you are using.

 2. Maintain strict software management, so you know what software you incorporate.

With good engineering management, incorporating open source offers high value at low risk
to the developer.

Fear, Uncertainty and Doubt

There are some myths which surround open source software and some pitfalls for the
unwary. We have already encountered some of these earlier, but to summarise.

 1. The first myth is that open source software is full of bugs. But any significant open
source project has far more eyes looking for bugs and their fixes than a commercial
product. Apache wouldn't have obtained its dominant position in the web server
market if it was not extremely robust.

 2. The second myth is that open source software is unsupported. But how many in this
audience can say that every bug, or feature request they have submitted to a
proprietary tool provider has been dealt with promptly and accurately? As we have
seen there are plenty of commercial enterprises supporting tools, and in addition there
is the wider community who are a source of support. And with open source you always
have the final option of fixing it yourself.

 3. The third myth is that free in the sense of “unpaid for” software is the same as open
source software. But as we see aove, such software just leaves you at the mercy of
ransom demands from the supplier.

The pitfalls are all to do with licensing.

 1. As a user, check what you are getting. A supplier may advertise a tool as being open
source and based on Eclipse. However the Eclipse license is permissive and non-viral.
So all too often you'll find the interesting parts are proprietary and secret. As an end
user your best friend is the viral license.

 2. The biggest danger for developers is when incorporating virally licensed code in their
products. As noted, good engineering discipline can easily avoid undesired
“contamination”.

3

 3. Constructing open source programs by bringing together open source components
from various sources requires care, since not all licenses are compatible. For example
you can combine GPL and BSD licensed code, but only if the combined code is
licensed under the GPL. This must be planned right at the start of the project.

Warranties and certification

Many industry sectors (automotive, medical, aerospace for example) require suppliers to use
certified tools and operating systems. Invariably such projects will require warranties,
guaranteeing the code.

Warranties can be problematic for open source software, since in its nature, it is not
possible to know the full provenance of the code. Invariably, open source software licenses
explicitly provide NO WARRANTY.

A number of companies offer specific versions of tools and operating systems, which they
have checked, and for which they provide warranties. That warranty costs money (the
supplier will have to back it with insurance) and almost invariably is voided if you modify
the software.

Certification is harder, because of the difficulty of charging for open source software itself
(you can do so, but why would anyone buy more than one copy). Where a company owns all
the rights to the software it can choose to issue a proprietary licensed version that is
certified and not open source.

Alternatively companies will take software through certification as a service. That is hard for
one company to justify, but it is possible for governments. The UK has for example certified
one particular Linux distribution for some military and security applications.

Suggestions of open source software for use in embedded systems

Now the interesting part. What open source software might you use in an embedded
system? The range is huge, and this paper is necessarily selective.

Wikipedia (www.wikipedia.org) has a number of lists of open source software, and is a good
starting point when considering open source software. While most large projects have their
own websites, smaller projects make use of one of a number of hosting sites. Two of the
most popular are SourceForge (sourceforge.net) and GitHub (github.com).

Hardware modeling

When it comes to hardware modeling, EDA has been a bastion of proprietary
software―much of it costing $50,000 per seat per year or more. However open source has
some credible modeling tools now available. For high level modeling, SystemC has always
had an open source reference implementation, while for cycle accurate modeling of
synthesizable Verilog RTL designs, Verilator, on its third major release cycle, is well
established and robust. For event driven simulation, Icarus Verilog handles Verilog, while
the newer GHDL handles VHDL. Both event driven simulators are significantly slower than
the fastest proprietary products. However for many designs―with hundreds of thousands of
gates or so, they are quite adequate.

More generally the Free Electronics Lab (formally the Fedora Electronics Lab) is a
collection of open source EDA tools, that forms part of the standard Fedora Linux
distribution.

Compiler tool chains

Whether you have physical hardware or only a model, you will need a compiler tool chain
and associated CASE tools.

For compilation, the GNU Compiler Collection (GCC) has dominated for the best part of 25
years, and supports nearly 40 architectures in its standard distribution, with a wide range
of languages (C, C++, Java, ObjectiveC/C++, Fortran and Ada as standard).

4

http://www.wikipedia.org/
https://github.com/
http://sourceforge.net/

However GCC is showing its age, and LLVM, with a more modern architecture is now
becoming a very popular alternative. Currently only C and C++ are well supported, with only
a handful of official targets ported. However many chip manufacturers have teams working
on LLVM versions for their processor. Apple and ARM's backing ensures LLVM will continue
to move forward rapidly.

Neither GCC nor LLVM is really aimed at “small” processors. For C support for
microcontrollers, the Small Device C Compiler (SDCC) is a good alternative.

Java took a while to come into the open source fold. The GCC Java compiler generally
suffers from compatibility issues. Fortunately Sun eventually made available the OpenJDK
system. It is not as complete as the full commercial system, but allows compatible Java
development in an open source environment.

Libraries

Since almost all software can be used as a library, we only consider the main C/C++ system
support libraries. These libraries are generally characterized by having more non-viral and
more permissive licensing.

For small embedded systems, the GNU tool chain is often used with newlib, a very small
library suitable for bare metal and RTOS environments. The main GNU library is glibc, but
too large for most embedded applications. A smaller library is uClibc, representing a good
compromise between newlib and glibc, and rich enough to be used with Linux.

C++ demands a comprehensive library, and both GCC and LLVM supply a version. However
an alternative is the STLport C++ library.

Graphical CASE

GCC, LLVM and SDCC are all command line tools. The pre-eminent graphical CASE
environment is Eclipse. Its configurability and relatively permissive licensing mean that it is
used as the graphical front end to a huge range of tools. Both GCC and LLVM have very
good integration in Eclipse.

Source code debugging

For source code debugging, the GNU Debugger (GDB) has been the main open source
option, and includes a very powerful integration in Eclipse. The LLVM project is working on
its own debugger (LLDB), but is not yet mature.

Version control

For source code version control, there is a wide choice. For a traditional centralized
repository there is CVS and Subversion (which is newer, and tending to replace CVS). For
distributed repositories, git, best known for being used by the Linux project is pre-eminent,
although there are alternatives in mercurial and bazaar.

Build systems

The longest standing build tool is make, a standard part of any Linux distribution. There
are many implementations (not all originally open source), but the GNU version is both
common and powerful. Make does not really scale well. The GNU autotools (autoconf,
automake and libtool) are a long established solution building on make, but need some care
in their use. A newer alternative is cmake. For Java systems Ant is commonly used.

Operating systems

Many RTOS are open source, or at least offer open source variants. Examples include
RTEMS, FreeRTOS and eCos. In most cases the suppliers offer proprietary variants, which
either offer support and warranties, or are certified for use in particular applications.

Linux is a poster child for open source software development, and widely used in larger
embedded systems. Some companies offer commercial versions of Linux for embedded use.
While the kernel is open source, there is no reason companies cannot add proprietary
drivers and applications.

5

For embedded applications, BusyBox is often used as a lightweight shell to run on the
kernel (for example in Netgear routers).

Android is a Linux derivative, and while Google have been criticized for keeping some parts
proprietary, much of the code is fully open source.

Middleware and applications

The range is huge, so this paper will only cover a handful that are of particular interest to
embedded engineers.

Open source code for many protocol stacks is available, particularly under Linux.

For timing synchronization between machines, NTP has always been open source.

For databases, the two big open source options are MySQL and PostgreSQL. There are a
wide range of other open source databases catering to specific needs.

Many embedded systems need to run a web server. Apache is used by 70% of all web
servers worldwide, but is quite suitable for embedded use as well (it is available with
BusyBox for example).

The following table summarizes all the tools discussed in this section, together with a link to
their source.

Tool Source

Hardware modeling
SystemC
Verilator
Icarus Verilog
GHDL
Free Electronics Lab

www.systemc.org
www.veripool.org/wiki/verilator
iverilog.icarus.com
ghdl.free.fr
spins.fedoraproject.org/fel

Compiler tool chains
GNU Compiler Collection (GCC)
LLVM
Small Device C Compiler (SDCC)
OpenJDK

gcc.gnu.org
llvm.org
sdcc.sourceforge.net
openjdk.java.net

System C/C++ libraries
newlib
glibc
uClibc
STLport C++

sourceware.org/newlib
www.gnu.org/s/libc
uclibc.org
www.stlport.org

Graphical CASE
Eclipse www.eclipse.org

Source code debugging
The GNU Debugger (GDB)
The LLVM Debugger (LLDB)

www.gnu.org/s/gdb
lldb.llvm.org

Version control
CVS
Subversion
Git
Mercurial
Bazaar

www.nongnu.org/cvs
subversion.tigris.org
git-scm.com
mercurial.selenic.com
bazaar.canonical.com/en

6

http://bazaar.canonical.com/en/
http://mercurial.selenic.com/
http://git-scm.com/
http://subversion.tigris.org/
http://www.nongnu.org/cvs/
http://lldb.llvm.org/
http://www.gnu.org/s/gdb/
http://www.eclipse.org/
http://www.stlport.org/
http://uclibc.org/
http://www.gnu.org/s/libc/
http://sourceware.org/newlib/
http://openjdk.java.net/
http://sdcc.sourceforge.net/
http://llvm.org/
http://gcc.gnu.org/
http://spins.fedoraproject.org/fel/
http://ghdl.free.fr/
http://iverilog.icarus.com/
http://www.veripool.org/wiki/verilator
http://www.systemc.org/

Tool Source

Build systems
GNU make
GNU autoconf
GNU automake
GNU libtool
cmake
Ant

www.gnu.org/software/make
www.gnu.org/s/autoconf
www.gnu.org/software/automake
www.gnu.org/software/libtool
www.cmake.org
ant.apache.org

Operating systems
RTEMS
FreeRTOS
eCos
Linux
BusyBox
Android

www.rtems.com
www.freertos.org
ecos.sourceware.org
www.kernel.org
www.busybox.net
www.android.com

Middleware and applications
NTP
MySQL
PostgreSQL
Apache

www.ntp.org
www.mysql.com
www.postgresql.org
www.apache.org

Open source hardware

Open source now extends to hardware as well as software. Licensing is more problematic,
since copyright law generally does not apply to manufactured items.

There are a number of board level designs which are open source, of which Arduino is
probably the best known. Milkymist is an open source video system based on an open
source processor.

There is an increasing range of open source silicon IP in Verilog and VHDL. Such IP is best
suited to FPGAs, although there have been open source ASICs produced. Perhaps best
known is the OpenCores project, which includes the OpenRISC 1000 32-bit RISC
processor and the reference Systems-on-chip ORPSoC and MinSoC.

Other open source hardware designs are hosted by the Open Hardware Repository at
CERN (although they tend to be designs useful in particle accelerators).

Lattice Semiconductor have made their LM32 processor available in open source form. This
processor is used in the Milkymist project and a version of Arduino based on the LM32 has
also been announced.

The following table summarizes the open source hardware available.

Project Source

Board level designs
Arduino
Milkymist

http://www.arduino.cc/
http://milkymist.org/

Silicon IP
OpenCores
OpenRISC 1000
ORPSoC
MinSoC
Open Hardware Repository
Lattice Semiconductor

opencores.org
opencores.org/or1k/Main_Page
opencores.org/or1k/ORPSoC
www.minsoc.com
www.ohwr.org
www.latticesemi.com

7

http://www.latticesemi.com/
http://www.ohwr.org/
http://www.minsoc.com/
http://opencores.org/or1k/ORPSoC
http://opencores.org/or1k/Main_Page
http://opencores.org/
http://milkymist.org/
http://www.arduino.cc/
http://www.apache.org/
http://www.postgresql.org/
http://www.mysql.com/
http://www.ntp.org/
http://www.android.com/
http://www.busybox.net/
http://www.kernel.org/
http://ecos.sourceware.org/
http://www.freertos.org/
http://www.rtems.com/
http://ant.apache.org/
http://www.cmake.org/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/automake/
http://www.gnu.org/s/autoconf/
http://www.gnu.org/software/make/

Summary

This paper has looked at all the issues concerned with using open source software,
particularly as it applies to embedded systems. The information should provide a useful
starting point for any embedded engineer considering adopting open source.

About the Author

Dr Jeremy Bennett is Chief Executive of Embecosm Limited. Embecosm
(www.embecosm.com) provides open source services, tools and models to facilitate
embedded software development with complex systems-on-chip.

Dr Bennett is also the embedded systems champion for the Electronics, Sensors and
Photonics Knowledge Transfer Network. The KTNs are government funded and charged with
increasing the competitiveness of UK industry by improving the flow of ideas between
industry and academia.

Contact him at jeremy.bennett@embecosm.com.

This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit creativecommons.org/licenses/by/2.0/uk/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:

• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:

• Attribution. You must give the original author, Jeremy Bennett;

• For any reuse or distribution, you must make clear to others the license terms of this
work;

• Any of these conditions can be waived if you get permission from the copyright holder,
Embecosm; and

• Nothing in this license impairs or restricts the author's moral rights.

8

http://creativecommons.org/licenses/by/2.0/uk/
mailto:jeremy.bennett@embecosm.com
http://www.embecosm.com/

